期刊论文详细信息
BMC Neuroscience
Probabilistic computation underlying sequence learning in a spiking attractor memory network
Poster Presentation
Anders Lansner1  Henrik Lindén2  Philip Tully3  Matthias H Hennig4 
[1] Department of Computational Biology, Royal Institute of Technology (KTH), S-10044, Stockholm, Sweden;Department of Numerical Analysis and Computing Science, Stockholm University, S-10044, Stockholm, Sweden;Stockholm Brain Institute, Karolinska Institutet, 171 77, Stockholm, Sweden;Department of Computational Biology, Royal Institute of Technology (KTH), S-10044, Stockholm, Sweden;Stockholm Brain Institute, Karolinska Institutet, 171 77, Stockholm, Sweden;Department of Computational Biology, Royal Institute of Technology (KTH), S-10044, Stockholm, Sweden;Stockholm Brain Institute, Karolinska Institutet, 171 77, Stockholm, Sweden;Institute for Adaptive and Neural Computation, University of Edinburgh, EH8 9AB, Edinburgh, UK;Institute for Adaptive and Neural Computation, University of Edinburgh, EH8 9AB, Edinburgh, UK;
关键词: Gamma Oscillation;    Spike Pattern;    Attractor Network;    Intrinsic Excitability;    Plasticity Rule;   
DOI  :  10.1186/1471-2202-14-S1-P236
来源: Springer
PDF
【 摘 要 】

【 授权许可】

CC BY   
© Tully et al; licensee BioMed Central Ltd. 2013

【 预 览 】
附件列表
Files Size Format View
RO202311090767229ZK.pdf 207KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  文献评价指标  
  下载次数:0次 浏览次数:0次