期刊论文详细信息
BMC Neuroscience | |
Probabilistic computation underlying sequence learning in a spiking attractor memory network | |
Poster Presentation | |
Anders Lansner1  Henrik Lindén2  Philip Tully3  Matthias H Hennig4  | |
[1] Department of Computational Biology, Royal Institute of Technology (KTH), S-10044, Stockholm, Sweden;Department of Numerical Analysis and Computing Science, Stockholm University, S-10044, Stockholm, Sweden;Stockholm Brain Institute, Karolinska Institutet, 171 77, Stockholm, Sweden;Department of Computational Biology, Royal Institute of Technology (KTH), S-10044, Stockholm, Sweden;Stockholm Brain Institute, Karolinska Institutet, 171 77, Stockholm, Sweden;Department of Computational Biology, Royal Institute of Technology (KTH), S-10044, Stockholm, Sweden;Stockholm Brain Institute, Karolinska Institutet, 171 77, Stockholm, Sweden;Institute for Adaptive and Neural Computation, University of Edinburgh, EH8 9AB, Edinburgh, UK;Institute for Adaptive and Neural Computation, University of Edinburgh, EH8 9AB, Edinburgh, UK; | |
关键词: Gamma Oscillation; Spike Pattern; Attractor Network; Intrinsic Excitability; Plasticity Rule; | |
DOI : 10.1186/1471-2202-14-S1-P236 | |
来源: Springer | |
【 摘 要 】
【 授权许可】
CC BY
© Tully et al; licensee BioMed Central Ltd. 2013
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311090767229ZK.pdf | 207KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]