BMC Genomics | |
Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs | |
Research Article | |
Yi Li1  Yi Sun2  Yunliang Jiang2  Li Kang2  Cai Ma2  Yuding Wang3  | |
[1] Central Hospital of Taian, 271018, Taian, People’s Republic of China;Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, 271018, Taian, People’s Republic of China;Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, 271018, Taian, People’s Republic of China;Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, 250100, Jinan, People’s Republic of China; | |
关键词: Pig; longissimus dorsi; Intramuscular fat content; Transcriptome; DNA methylome; Gene; | |
DOI : 10.1186/s12864-017-4201-9 | |
received in 2017-02-17, accepted in 2017-10-08, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundThe intramuscular fat content (IMF) refers to the amount of fat within muscles, including the sum of phospholipids mainly found in cell membranes, triglycerides and cholesterol, and is determined both by hyperplasia and hypertrophy of adipocyte during the development of pigs. The IMF content is an important economic trait that is genetically controlled by multiple genes. The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by excessively higher level of IMF content (9%~12%), therefore, is suitable for the identification of genes controlling IMF variations. To identify genes underlying IMF deposition, we performed genome-wide transcriptome and methylome analyses on longissimus dorsi (LD) muscle in Laiwu pigs across four developmental stages.ResultsA total of 22,524 expressed genes were detected and 1158 differentially expressed genes (DEGs) were hierarchically clustered in the LD muscle over four developmental stages from 60 d to 400 d. These genes were significantly clustered into four temporal expression profiles, and genes participating in fat cell differentiation and lipid biosynthesis processes were identified. From 120 d to 240 d, the period with the maximum IMF deposition rate, the lipid biosynthesis related genes (FOSL1, FAM213B and G0S2), transcription factors (TFs) (EGR1, KLF5, SREBF2, TP53 and TWIST1) and enriched pathways (steroid biosynthesis and fatty acid biosynthesis) were revealed; and fat biosynthesis relevant genes showing differences in DNA methylation in gene body or intergenic region were detected, such as FASN, PVALB, ID2, SH3PXD2B and EGR1.ConclusionsThis study provides a comprehensive landscape of transcriptome of the LD muscle in Laiwu pigs ranging from 60 to 400 days old, and methylome of the LD muscle in 120 d and 240 d Laiwu pigs. A set of candidate genes and TFs involved in fat biosynthesis process were identified, which were probably responsible for IMF deposition. The results from this study would provide a reference for the identification of genes controlling IMF variation, and for exploring molecular mechanisms underlying IMF deposition in pigs.
【 授权许可】
CC BY
© The Author(s). 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311090745548ZK.pdf | 4021KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]