期刊论文详细信息
BMC Bioinformatics
On the inconsistency of ℓ1-penalised sparse precision matrix estimation
Research
Antti Honkela1  Otte Heinävaara1  Janne Leppä-aho1  Jukka Corander2 
[1] Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland;Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland;Department of Biostatistics, University of Oslo, Oslo, Norway;
关键词: Gaussian graphical model;    Structure learning;    Inconsistency;    Graphical lasso;   
DOI  :  10.1186/s12859-016-1309-x
来源: Springer
PDF
【 摘 要 】

BackgroundVarious ℓ1-penalised estimation methods such as graphical lasso and CLIME are widely used for sparse precision matrix estimation and learning of undirected network structure from data. Many of these methods have been shown to be consistent under various quantitative assumptions about the underlying true covariance matrix. Intuitively, these conditions are related to situations where the penalty term will dominate the optimisation.ResultsWe explore the consistency of ℓ1-based methods for a class of bipartite graphs motivated by the structure of models commonly used for gene regulatory networks. We show that all ℓ1-based methods fail dramatically for models with nearly linear dependencies between the variables. We also study the consistency on models derived from real gene expression data and note that the assumptions needed for consistency never hold even for modest sized gene networks and ℓ1-based methods also become unreliable in practice for larger networks.ConclusionsOur results demonstrate that ℓ1-penalised undirected network structure learning methods are unable to reliably learn many sparse bipartite graph structures, which arise often in gene expression data. Users of such methods should be aware of the consistency criteria of the methods and check if they are likely to be met in their application of interest.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311090694071ZK.pdf 974KB PDF download
12888_2017_1284_Article_IEq2.gif 1KB Image download
12864_2017_4316_Article_IEq2.gif 1KB Image download
12864_2017_3492_Article_IEq8.gif 1KB Image download
12864_2017_3492_Article_IEq11.gif 1KB Image download
12864_2017_4275_Article_IEq3.gif 1KB Image download
12864_2017_4190_Article_IEq4.gif 1KB Image download
12864_2017_4190_Article_IEq6.gif 1KB Image download
12864_2017_3655_Article_IEq3.gif 1KB Image download
12864_2017_3655_Article_IEq4.gif 1KB Image download
12864_2017_3492_Article_IEq15.gif 1KB Image download
12864_2017_3492_Article_IEq16.gif 1KB Image download
12864_2017_3492_Article_IEq17.gif 1KB Image download
12864_2017_3492_Article_IEq18.gif 1KB Image download
【 图 表 】

12864_2017_3492_Article_IEq18.gif

12864_2017_3492_Article_IEq17.gif

12864_2017_3492_Article_IEq16.gif

12864_2017_3492_Article_IEq15.gif

12864_2017_3655_Article_IEq4.gif

12864_2017_3655_Article_IEq3.gif

12864_2017_4190_Article_IEq6.gif

12864_2017_4190_Article_IEq4.gif

12864_2017_4275_Article_IEq3.gif

12864_2017_3492_Article_IEq11.gif

12864_2017_3492_Article_IEq8.gif

12864_2017_4316_Article_IEq2.gif

12888_2017_1284_Article_IEq2.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  文献评价指标  
  下载次数:2次 浏览次数:3次