期刊论文详细信息
BMC Bioinformatics
Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection
Methodology Article
Benjamin Hofner1  Andreas Mayr2  Matthias Schmid3 
[1] Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054, Erlangen, Germany;Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054, Erlangen, Germany;Institut für Medizinische Biometrie, Informatik und Epidemiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany;Institut für Medizinische Biometrie, Informatik und Epidemiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany;
关键词: Time-to-event data;    Boosting;    Stability selection;    Concordance index;    Variable selection;    High-dimensional data;   
DOI  :  10.1186/s12859-016-1149-8
 received in 2015-11-19, accepted in 2016-07-13,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundWhen constructing new biomarker or gene signature scores for time-to-event outcomes, the underlying aims are to develop a discrimination model that helps to predict whether patients have a poor or good prognosis and to identify the most influential variables for this task. In practice, this is often done fitting Cox models. Those are, however, not necessarily optimal with respect to the resulting discriminatory power and are based on restrictive assumptions. We present a combined approach to automatically select and fit sparse discrimination models for potentially high-dimensional survival data based on boosting a smooth version of the concordance index (C-index). Due to this objective function, the resulting prediction models are optimal with respect to their ability to discriminate between patients with longer and shorter survival times. The gradient boosting algorithm is combined with the stability selection approach to enhance and control its variable selection properties.ResultsThe resulting algorithm fits prediction models based on the rankings of the survival times and automatically selects only the most stable predictors. The performance of the approach, which works best for small numbers of informative predictors, is demonstrated in a large scale simulation study: C-index boosting in combination with stability selection is able to identify a small subset of informative predictors from a much larger set of non-informative ones while controlling the per-family error rate. In an application to discover biomarkers for breast cancer patients based on gene expression data, stability selection yielded sparser models and the resulting discriminatory power was higher than with lasso penalized Cox regression models.ConclusionThe combination of stability selection and C-index boosting can be used to select small numbers of informative biomarkers and to derive new prediction rules that are optimal with respect to their discriminatory power. Stability selection controls the per-family error rate which makes the new approach also appealing from an inferential point of view, as it provides an alternative to classical hypothesis tests for single predictor effects. Due to the shrinkage and variable selection properties of statistical boosting algorithms, the latter tests are typically unfeasible for prediction models fitted by boosting.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311090594157ZK.pdf 675KB PDF download
12864_2017_3731_Article_IEq5.gif 1KB Image download
12864_2017_4030_Article_IEq15.gif 1KB Image download
12864_2016_2880_Article_IEq5.gif 1KB Image download
12864_2017_4186_Article_IEq22.gif 1KB Image download
12864_2016_3105_Article_IEq9.gif 1KB Image download
12864_2017_4186_Article_IEq25.gif 1KB Image download
12906_2015_Article_775_TeX2GIF_IEq3.gif 1KB Image download
12864_2017_4186_Article_IEq26.gif 1KB Image download
12864_2017_4132_Article_IEq1.gif 1KB Image download
12864_2017_4132_Article_IEq2.gif 1KB Image download
12864_2017_4186_Article_IEq28.gif 1KB Image download
12864_2017_4132_Article_IEq3.gif 1KB Image download
12864_2016_2789_Article_IEq16.gif 1KB Image download
12888_2016_877_Article_IEq4.gif 1KB Image download
12864_2017_3669_Article_IEq5.gif 1KB Image download
12864_2017_4196_Article_IEq2.gif 1KB Image download
12864_2015_2192_Article_IEq11.gif 1KB Image download
12870_2017_1059_Article_IEq7.gif 1KB Image download
12864_2017_3733_Article_IEq17.gif 1KB Image download
12888_2016_877_Article_IEq10.gif 1KB Image download
12864_2017_3733_Article_IEq19.gif 1KB Image download
12864_2017_4116_Article_IEq3.gif 1KB Image download
12864_2017_3487_Article_IEq17.gif 1KB Image download
12864_2017_3733_Article_IEq22.gif 1KB Image download
12864_2016_3353_Article_IEq23.gif 1KB Image download
12888_2016_877_Article_IEq17.gif 1KB Image download
12888_2016_877_Article_IEq18.gif 1KB Image download
12864_2017_3771_Article_IEq13.gif 1KB Image download
【 图 表 】

12864_2017_3771_Article_IEq13.gif

12888_2016_877_Article_IEq18.gif

12888_2016_877_Article_IEq17.gif

12864_2016_3353_Article_IEq23.gif

12864_2017_3733_Article_IEq22.gif

12864_2017_3487_Article_IEq17.gif

12864_2017_4116_Article_IEq3.gif

12864_2017_3733_Article_IEq19.gif

12888_2016_877_Article_IEq10.gif

12864_2017_3733_Article_IEq17.gif

12870_2017_1059_Article_IEq7.gif

12864_2015_2192_Article_IEq11.gif

12864_2017_4196_Article_IEq2.gif

12864_2017_3669_Article_IEq5.gif

12888_2016_877_Article_IEq4.gif

12864_2016_2789_Article_IEq16.gif

12864_2017_4132_Article_IEq3.gif

12864_2017_4186_Article_IEq28.gif

12864_2017_4132_Article_IEq2.gif

12864_2017_4132_Article_IEq1.gif

12864_2017_4186_Article_IEq26.gif

12906_2015_Article_775_TeX2GIF_IEq3.gif

12864_2017_4186_Article_IEq25.gif

12864_2016_3105_Article_IEq9.gif

12864_2017_4186_Article_IEq22.gif

12864_2016_2880_Article_IEq5.gif

12864_2017_4030_Article_IEq15.gif

12864_2017_3731_Article_IEq5.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  文献评价指标  
  下载次数:12次 浏览次数:2次