期刊论文详细信息
BMC Genomics
Boolean network inference from time series data incorporating prior biological knowledge
Research
Ranadip Pal1  Saad Haider1 
[1] Department of Electrical and Computer Engineering, Texas Tech University, 79409, Lubbock, USA;
关键词: Time Series Data;    Truth Table;    Boolean Network;    Human Mammary Epithelial Cell;    Similarity Ratio;   
DOI  :  10.1186/1471-2164-13-S6-S9
来源: Springer
PDF
【 摘 要 】

BackgroundNumerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points.ResultsWe present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. We applied our inference approach to 6 time point transcriptomic data on Human Mammary Epithelial Cell line (HMEC) after application of Epidermal Growth Factor (EGF) and generated a BN with a plausible biological structure satisfying the data. We further defined and applied a similarity measure to compare synthetic BNs and BNs generated through the proposed approach constructed from transitions of various paths of the synthetic BNs. We have also compared the performance of our algorithm with two existing BN inference algorithms.ConclusionsThrough theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. The framework when applied to experimental data and data generated from synthetic BNs were able to estimate BNs with high similarity scores. Comparison with existing BN inference algorithms showed the better performance of our proposed algorithm for limited time series data. The proposed framework can also be applied to optimize the connectivity of a GRN from experimental data when the prior biological knowledge on regulators is limited or not unique.

【 授权许可】

CC BY   
© Haider and Pal; licensee BioMed Central Ltd. 2012

【 预 览 】
附件列表
Files Size Format View
RO202311090447711ZK.pdf 7028KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  文献评价指标  
  下载次数:3次 浏览次数:1次