期刊论文详细信息
BMC Plant Biology
CCS52A2/FZR1, a cell cycle regulator, is an essential factor for shoot apical meristem maintenance in Arabidopsis thaliana
Research Article
Yuhai Cui1  Wei Ye2  Beibei Li2  Yajie Liu2  Kede Liu2  Xiaojing Zhou3  Mark P Running4 
[1] Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, N5V 4 T3, London, ON, Canada;National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, P. R. China;Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops,Ministry of Agriculture, Wuhan, P. R. China;University of Louisville, Louisville, KY, USA;
关键词: Double Mutant;    Shoot Apex;    Shoot Apical Meristem;    Shoot Meristem;    Quiescent Center;   
DOI  :  10.1186/1471-2229-12-135
 received in 2012-06-18, accepted in 2012-08-03,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundCell division and cell fate decisions regulate organ formation and function in plant growth and development. It is still unclear how specific meristematic regulatory networks operate with the cell cycle machinery to translate stem cell identity and maintenance into cellular behavior. In this study, we address these questions by analysis of a shoot apex defective mutant, namely xcm9.ResultsPhenotypic analysis of the xcm9 mutant reveals concomitant premature termination of floral shoots with frequent bifurcation of the shoot apices, stems, and flowers. Microscopic observations show irregular cell organization in shoot apical meristems of xcm9. Positional cloning revealed that xcm9 is a loss of function allele of the CCS52A2/FZR1 gene, which has previously been implicated in root development. Expression analysis demonstrated that CCS52A2 maintains a higher transcriptional expression level in actively dividing tissue. Genetic studies indicated that the CCS52A2 gene functions together with WUSCHEL (WUS) and CLAVATA3 (CLV3) in regulating the development of the shoot meristem, and also contributes to this regulation together with the chromatin remodeling pathway. In addition, fewer xcm9 cells express CYCLIN B1:1, showing that cell cycle progression is disrupted in the mutant.ConclusionWe propose that the CCS52A2 gene is a mediator that functions together with meristematic genes to regulate meristem organization, and cross-functions with chromatin regulators in cell cycle progression during shoot apical meristem development.

【 授权许可】

CC BY   
© Liu et al.; licensee BioMed Central Ltd. 2012

【 预 览 】
附件列表
Files Size Format View
RO202311090156507ZK.pdf 6247KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  文献评价指标  
  下载次数:4次 浏览次数:0次