期刊论文详细信息
Frontiers in Plant Science
Phenotypic plasticity of growth ring traits in Pinus hartwegii at the ends of its elevational gradient
Plant Science
J. Jesús Vargas-Hernández1  Lizbeth Carrillo-Arizmendi2  Angel Roberto Martínez-Campos2  Marlin Pérez-Suárez2  Philippe Rozenberg3 
[1] Department of Forestry Sciences, Colegio de Postgraduados, Montecillo, Texcoco, Estado de México, Mexico;Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Estado de México, Mexico;UMR 0588 BIOFORA, INRAE Val de Loire, Cedex, Orleans, France;
关键词: radial growth;    reaction norms;    climate;    Nevado de Toluca;    La Malinche;   
DOI  :  10.3389/fpls.2023.1072638
 received in 2022-10-17, accepted in 2023-09-04,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

IntroductionPhenotypic plasticity (PP) could be an important short-term mechanism to modify physiological and morphological traits in response to climate change and global warming, particularly for high-mountain tree species. The objective was to evaluate PP response of growth ring traits to temperature and precipitation in Pinus hartwegii Lindl. populations located at the ends of its elevational gradient on two volcanic mountains in central Mexico (La Malinche and Nevado de Toluca).MethodsIncrement cores collected from 274 P. hartwegii trees were used to estimate their PP through reaction norms (RN), which relate the ring width and density traits with climate variables (temperature and precipitation). We estimated the trees’ sensitivity (significant RN) to climatic variables, as well as the relative proportion of RN with positive and negative slope. We also estimated the relationship between the PP of ring width and density traits using correlation and Principal Component (PC) analyses.ResultsOver 70% of all trees showed significant RN to growing season and winter temperatures for at least one growth ring trait, with a similar proportion of significant RN at both ends of the gradient on both mountains. Ring width traits had mostly negative RN, while ring density traits tended to have positive RN. Frequency of negative RN decreased from lower to higher elevation for most traits. Average PP was higher at the lower end of the gradient, especially on LM, both for ring width and ring density traits, although high intrapopulation variation in PP was found on both mountains.DiscussionResults indicate that P. hartwegii presents spatially differentiated plastic responses in width and density components of radial growth. PP was particularly strong at the lower elevation, which has higher temperature and water stress conditions, putting these populations at risk from the continuing global warming driven by climate change.

【 授权许可】

Unknown   
Copyright © 2023 Carrillo-Arizmendi, Vargas-Hernández, Rozenberg, Pérez-Suárez and Martínez-Campos

【 预 览 】
附件列表
Files Size Format View
RO202310124013232ZK.pdf 5910KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次