期刊论文详细信息
BMC Bioinformatics
A heterogeneous graph convolutional attention network method for classification of autism spectrum disorder
Research
Lizhen Shao1  Xunying Chen2  Cong Fu2 
[1] Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, 100083, Beijing, China;Lancaster University, LA1 4YX, Lancaster, UK;Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, 100083, Beijing, China;Shunde Graduate School, University of Science and Technology Beijing, 528399, Foshan, China;
关键词: FMRI;    Heterogeneous graph convolution network;    ASD;    Attention mechanism;   
DOI  :  10.1186/s12859-023-05495-7
 received in 2023-04-18, accepted in 2023-09-21,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundAutism spectrum disorder (ASD) is a serious developmental disorder of the brain. Recently, various deep learning methods based on functional magnetic resonance imaging (fMRI) data have been developed for the classification of ASD. Among them, graph neural networks, which generalize deep neural network models to graph structured data, have shown great advantages. However, in graph neural methods, because the graphs constructed are homogeneous, the phenotype information of the subjects cannot be fully utilized. This affects the improvement of the classification performance.MethodsTo fully utilize the phenotype information, this paper proposes a heterogeneous graph convolutional attention network (HCAN) model to classify ASD. By combining an attention mechanism and a heterogeneous graph convolutional network, important aggregated features can be extracted in the HCAN. The model consists of a multilayer HCAN feature extractor and a multilayer perceptron (MLP) classifier. First, a heterogeneous population graph was constructed based on the fMRI and phenotypic data. Then, a multilayer HCAN is used to mine graph-based features from the heterogeneous graph. Finally, the extracted features are fed into an MLP for the final classification.ResultsThe proposed method is assessed on the autism brain imaging data exchange (ABIDE) repository. In total, 871 subjects in the ABIDE I dataset are used for the classification task. The best classification accuracy of 82.9% is achieved. Compared to the other methods using exactly the same subjects in the literature, the proposed method achieves superior performance to the best reported result.ConclusionsThe proposed method can effectively integrate heterogeneous graph convolutional networks with a semantic attention mechanism so that the phenotype features of the subjects can be fully utilized. Moreover, it shows great potential in the diagnosis of brain functional disorders with fMRI data.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310119606549ZK.pdf 2201KB PDF download
Fig. 2 74KB Image download
Fig. 5 1051KB Image download
MediaObjects/40644_2023_604_MOESM1_ESM.docx 35KB Other download
MediaObjects/12888_2023_5169_MOESM1_ESM.pdf 77KB PDF download
Fig. 7 1379KB Image download
12936_2023_4724_Article_IEq75.gif 1KB Image download
Fig. 3 618KB Image download
Fig. 2 345KB Image download
MediaObjects/40644_2023_604_MOESM2_ESM.docx 1783KB Other download
41408_2023_919_Article_IEq11.gif 1KB Image download
41408_2023_919_Article_IEq12.gif 1KB Image download
41408_2023_919_Article_IEq13.gif 1KB Image download
41408_2023_919_Article_IEq14.gif 1KB Image download
41408_2023_919_Article_IEq15.gif 1KB Image download
41408_2023_919_Article_IEq16.gif 1KB Image download
Fig. 1 604KB Image download
1962KB Image download
Fig. 2 600KB Image download
13690_2023_1170_Article_IEq18.gif 1KB Image download
13690_2023_1177_Fige_HTML.png 10KB Image download
Fig. 1 176KB Image download
Fig. 1 28KB Image download
MediaObjects/42004_2023_998_MOESM3_ESM.txt 556KB Other download
12888_2023_5172_Article_IEq52.gif 1KB Image download
12888_2023_5172_Article_IEq41.gif 1KB Image download
12888_2023_5172_Article_IEq42.gif 1KB Image download
Fig. 2 243KB Image download
12888_2023_5172_Article_IEq44.gif 1KB Image download
12888_2023_5172_Article_IEq45.gif 1KB Image download
12888_2023_5172_Article_IEq46.gif 1KB Image download
12888_2023_5172_Article_IEq47.gif 1KB Image download
12888_2023_5172_Article_IEq48.gif 1KB Image download
Fig. 1 457KB Image download
12888_2023_5172_Article_IEq53.gif 1KB Image download
12888_2023_5172_Article_IEq50.gif 1KB Image download
13690_2023_1170_Article_IEq19.gif 1KB Image download
Fig. 1 588KB Image download
Fig. 2 217KB Image download
MediaObjects/12951_2023_2086_MOESM1_ESM.docx 179KB Other download
Fig. 4 186KB Image download
Fig. 1 664KB Image download
Fig. 3 180KB Image download
13063_2023_7612_Figbt_HTML.png 4KB Image download
Fig. 1 76KB Image download
Fig. 7 1792KB Image download
13690_2023_1170_Article_IEq137.gif 1KB Image download
MediaObjects/13046_2023_2837_MOESM1_ESM.tif 2985KB Other download
Fig. 9 5595KB Image download
Fig. 2 400KB Image download
Fig. 1 67KB Image download
Fig. 3 1147KB Image download
Fig. 1 476KB Image download
Fig. 2 1279KB Image download
13690_2023_1170_Article_IEq21.gif 1KB Image download
MediaObjects/13690_2023_1177_MOESM2_ESM.docx 26KB Other download
Fig. 2 1637KB Image download
12936_2023_4724_Article_IEq79.gif 1KB Image download
Fig. 5 25KB Image download
Fig. 2 1907KB Image download
Fig. 4 1213KB Image download
13690_2023_1170_Article_IEq138.gif 1KB Image download
13690_2023_1170_Article_IEq23.gif 1KB Image download
MediaObjects/13690_2023_1177_MOESM4_ESM.docx 12KB Other download
MediaObjects/12902_2023_1450_MOESM1_ESM.docx 26KB Other download
12936_2023_4724_Article_IEq82.gif 1KB Image download
Fig. 1 737KB Image download
Chart 2 118KB Image download
Fig. 1 570KB Image download
Fig. 3 1045KB Image download
Fig. 1 267KB Image download
Fig. 3 891KB Image download
13690_2023_1170_Article_IEq140.gif 1KB Image download
Fig. 1 122KB Image download
Fig. 3 53KB Image download
Fig. 2 90KB Image download
Fig. 4 877KB Image download
13690_2023_1170_Article_IEq24.gif 1KB Image download
Fig. 3 585KB Image download
13690_2023_1170_Article_IEq25.gif 1KB Image download
13063_2023_7648_Article_IEq5.gif 1KB Image download
MediaObjects/12902_2023_1450_MOESM2_ESM.docx 16KB Other download
【 图 表 】

13063_2023_7648_Article_IEq5.gif

13690_2023_1170_Article_IEq25.gif

Fig. 3

13690_2023_1170_Article_IEq24.gif

Fig. 4

Fig. 2

Fig. 3

Fig. 1

13690_2023_1170_Article_IEq140.gif

Fig. 3

Fig. 1

Fig. 3

Fig. 1

Chart 2

Fig. 1

12936_2023_4724_Article_IEq82.gif

13690_2023_1170_Article_IEq23.gif

13690_2023_1170_Article_IEq138.gif

Fig. 4

Fig. 2

Fig. 5

12936_2023_4724_Article_IEq79.gif

Fig. 2

13690_2023_1170_Article_IEq21.gif

Fig. 2

Fig. 1

Fig. 3

Fig. 1

Fig. 2

Fig. 9

13690_2023_1170_Article_IEq137.gif

Fig. 7

Fig. 1

13063_2023_7612_Figbt_HTML.png

Fig. 3

Fig. 1

Fig. 4

Fig. 2

Fig. 1

13690_2023_1170_Article_IEq19.gif

12888_2023_5172_Article_IEq50.gif

12888_2023_5172_Article_IEq53.gif

Fig. 1

12888_2023_5172_Article_IEq48.gif

12888_2023_5172_Article_IEq47.gif

12888_2023_5172_Article_IEq46.gif

12888_2023_5172_Article_IEq45.gif

12888_2023_5172_Article_IEq44.gif

Fig. 2

12888_2023_5172_Article_IEq42.gif

12888_2023_5172_Article_IEq41.gif

12888_2023_5172_Article_IEq52.gif

Fig. 1

Fig. 1

13690_2023_1177_Fige_HTML.png

13690_2023_1170_Article_IEq18.gif

Fig. 2

Fig. 1

41408_2023_919_Article_IEq16.gif

41408_2023_919_Article_IEq15.gif

41408_2023_919_Article_IEq14.gif

41408_2023_919_Article_IEq13.gif

41408_2023_919_Article_IEq12.gif

41408_2023_919_Article_IEq11.gif

Fig. 2

Fig. 3

12936_2023_4724_Article_IEq75.gif

Fig. 7

Fig. 5

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  文献评价指标  
  下载次数:5次 浏览次数:0次