BioMedical Engineering OnLine | |
Human oocytes image classification method based on deep neural networks | |
Research | |
Grzegorz Mrugacz1  Anna Targosz2  Dariusz Myszor3  | |
[1] Center for Reproductive Medicine Bocian, 26 Akademicka St, 15-267, Białystok, Poland;Department of Histology and Embryology, Faculty of Medical Sciences, Medical University of Silesia, 18 Medyków St, 40-752, Katowice, Poland;Center for Reproductive Medicine Bocian, 26 Akademicka St, 15-267, Białystok, Poland;Institute of Computer Sciences, Silesian University of Technology, 16 Akademicka St, 44-100, Gliwice, Poland; | |
关键词: IVF; Human oocyte; Classification; Artificial intelligence; Machine learning; Deep neural network; | |
DOI : 10.1186/s12938-023-01153-4 | |
received in 2023-06-03, accepted in 2023-09-07, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
BackgroundThe effectiveness of in vitro fertilization depends on the assessment and selection of oocytes and embryos with the highest developmental potential. One of the tasks in the ICSI (intracytoplasmic sperm injection) procedure is the classification of oocytes according to the stages of their meiotic maturity. Oocytes classification traditionally is done manually during their observation under the light microscope. The paper is part of the bigger task, the development of the system for optimal oocyte and embryos selection. In the hereby work, we present the method for the automatic classification of oocytes based on their images, that employs DNN algorithms.ResultsFor the purpose of oocyte class determination, two structures based on deep neural networks were applied. DeepLabV3Plus was responsible for the analysis of oocyte images in order to extract specific regions of oocyte images. Then extracted components were transferred to the network, inspired by the SqueezeNet architecture, for the purpose of oocyte type classification. The structure of this network was refined by a genetic algorithm in order to improve generalization abilities as well as reduce the network’s FLOPs thus minimizing inference time. As a result, Acc¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{Acc}$$\end{document} at the level of 0.964 was obtained at the level of the validation set and 0.957 at the level of the test set. Generated neural networks as well as code that allows running the processing pipe were made publicly available.ConclusionsIn this paper, the complete pipeline was proposed that is able to automatically classify human oocytes into three classes MI, MII, and PI based on the oocytes’ microscopic image.
【 授权许可】
CC BY
© BioMed Central Ltd., part of Springer Nature 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202310118880441ZK.pdf | 1223KB | download | |
13690_2023_1170_Article_IEq167.gif | 1KB | Image | download |
Fig. 6 | 2149KB | Image | download |
MediaObjects/41408_2023_917_MOESM1_ESM.pdf | 1732KB | download | |
Fig. 4 | 954KB | Image | download |
MediaObjects/42004_2023_1007_MOESM1_ESM.pdf | 3331KB | download | |
Fig. 4 | 964KB | Image | download |
13690_2023_1170_Article_IEq173.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq67.gif | 1KB | Image | download |
12938_2023_1153_Article_IEq11.gif | 1KB | Image | download |
12888_2023_5142_Article_IEq2.gif | 1KB | Image | download |
MediaObjects/41408_2023_910_MOESM1_ESM.docx | 353KB | Other | download |
12888_2023_5142_Article_IEq6.gif | 1KB | Image | download |
12888_2023_5142_Article_IEq8.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq196.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq198.gif | 1KB | Image | download |
40795_2023_760_Article_IEq26.gif | 1KB | Image | download |
Fig. 6 | 622KB | Image | download |
12888_2023_5142_Article_IEq26.gif | 1KB | Image | download |
40360_2023_687_Article_IEq1.gif | 1KB | Image | download |
12938_2023_1153_Article_IEq25.gif | 1KB | Image | download |
Fig. 1 | 1720KB | Image | download |
Fig. 2 | 201KB | Image | download |
13690_2023_1170_Article_IEq223.gif | 1KB | Image | download |
Fig. 4 | 185KB | Image | download |
MediaObjects/12864_2023_9587_MOESM3_ESM.xlsx | 85KB | Other | download |
12888_2023_5172_Article_IEq8.gif | 1KB | Image | download |
Fig. 2 | 1857KB | Image | download |
Fig. 2 | 209KB | Image | download |
13690_2023_1170_Article_IEq83.gif | 1KB | Image | download |
MediaObjects/13100_2023_301_MOESM7_ESM.pdf | 425KB | download | |
Fig. 2 | 2464KB | Image | download |
562KB | Image | download | |
Fig. 2 | 1067KB | Image | download |
Fig. 3 | 919KB | Image | download |
Fig. 2 | 203KB | Image | download |
Fig. 7 | 171KB | Image | download |
12888_2023_5172_Article_IEq17.gif | 1KB | Image | download |
Fig. 6 | 749KB | Image | download |
Fig. 5 | 1835KB | Image | download |
Fig. 1 | 472KB | Image | download |
Fig. 2 | 357KB | Image | download |
13690_2023_1170_Article_IEq111.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq112.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq113.gif | 1KB | Image | download |
12888_2023_5172_Article_IEq26.gif | 1KB | Image | download |
12888_2023_5172_Article_IEq27.gif | 1KB | Image | download |
MediaObjects/42004_2023_1004_MOESM3_ESM.pdf | 127KB | download | |
12888_2023_5172_Article_IEq29.gif | 1KB | Image | download |
MediaObjects/13068_2023_2396_MOESM4_ESM.tif | 23548KB | Other | download |
Fig. 4 | 380KB | Image | download |
Fig. 1 | 95KB | Image | download |
13690_2023_1170_Article_IEq4.gif | 1KB | Image | download |
13690_2023_1170_Article_IEq11.gif | 1KB | Image | download |
Fig. 4 | 1655KB | Image | download |
MediaObjects/13690_2023_1188_MOESM5_ESM.pdf | 178KB | download | |
MediaObjects/42004_2023_1000_MOESM6_ESM.pdf | 1742KB | download | |
Fig. 1 | 161KB | Image | download |
12888_2023_5172_Article_IEq35.gif | 1KB | Image | download |
12888_2023_5172_Article_IEq36.gif | 1KB | Image | download |
12888_2023_5172_Article_IEq37.gif | 1KB | Image | download |
Fig. 2 | 340KB | Image | download |
12888_2023_5172_Article_IEq38.gif | 1KB | Image | download |
Fig. 3 | 53KB | Image | download |
13690_2023_1177_Figc_HTML.png | 15KB | Image | download |
Fig. 8 | 184KB | Image | download |
Fig. 7 | 1379KB | Image | download |
12936_2023_4724_Article_IEq74.gif | 1KB | Image | download |
Fig. 2 | 600KB | Image | download |
MediaObjects/12951_2023_2086_MOESM1_ESM.docx | 179KB | Other | download |
Fig. 1 | 664KB | Image | download |
12936_2023_4724_Article_IEq79.gif | 1KB | Image | download |
Fig. 5 | 25KB | Image | download |
【 图 表 】
Fig. 5
12936_2023_4724_Article_IEq79.gif
Fig. 1
Fig. 2
12936_2023_4724_Article_IEq74.gif
Fig. 7
Fig. 8
13690_2023_1177_Figc_HTML.png
Fig. 3
12888_2023_5172_Article_IEq38.gif
Fig. 2
12888_2023_5172_Article_IEq37.gif
12888_2023_5172_Article_IEq36.gif
12888_2023_5172_Article_IEq35.gif
Fig. 1
Fig. 4
13690_2023_1170_Article_IEq11.gif
13690_2023_1170_Article_IEq4.gif
Fig. 1
Fig. 4
12888_2023_5172_Article_IEq29.gif
12888_2023_5172_Article_IEq27.gif
12888_2023_5172_Article_IEq26.gif
13690_2023_1170_Article_IEq113.gif
13690_2023_1170_Article_IEq112.gif
13690_2023_1170_Article_IEq111.gif
Fig. 2
Fig. 1
Fig. 5
Fig. 6
12888_2023_5172_Article_IEq17.gif
Fig. 7
Fig. 2
Fig. 3
Fig. 2
Fig. 2
13690_2023_1170_Article_IEq83.gif
Fig. 2
Fig. 2
12888_2023_5172_Article_IEq8.gif
Fig. 4
13690_2023_1170_Article_IEq223.gif
Fig. 2
Fig. 1
12938_2023_1153_Article_IEq25.gif
40360_2023_687_Article_IEq1.gif
12888_2023_5142_Article_IEq26.gif
Fig. 6
40795_2023_760_Article_IEq26.gif
13690_2023_1170_Article_IEq198.gif
13690_2023_1170_Article_IEq196.gif
12888_2023_5142_Article_IEq8.gif
12888_2023_5142_Article_IEq6.gif
12888_2023_5142_Article_IEq2.gif
12938_2023_1153_Article_IEq11.gif
13690_2023_1170_Article_IEq67.gif
13690_2023_1170_Article_IEq173.gif
Fig. 4
Fig. 4
Fig. 6
13690_2023_1170_Article_IEq167.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]