期刊论文详细信息
BioMedical Engineering OnLine
Human oocytes image classification method based on deep neural networks
Research
Grzegorz Mrugacz1  Anna Targosz2  Dariusz Myszor3 
[1] Center for Reproductive Medicine Bocian, 26 Akademicka St, 15-267, Białystok, Poland;Department of Histology and Embryology, Faculty of Medical Sciences, Medical University of Silesia, 18 Medyków St, 40-752, Katowice, Poland;Center for Reproductive Medicine Bocian, 26 Akademicka St, 15-267, Białystok, Poland;Institute of Computer Sciences, Silesian University of Technology, 16 Akademicka St, 44-100, Gliwice, Poland;
关键词: IVF;    Human oocyte;    Classification;    Artificial intelligence;    Machine learning;    Deep neural network;   
DOI  :  10.1186/s12938-023-01153-4
 received in 2023-06-03, accepted in 2023-09-07,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe effectiveness of in vitro fertilization depends on the assessment and selection of oocytes and embryos with the highest developmental potential. One of the tasks in the ICSI (intracytoplasmic sperm injection) procedure is the classification of oocytes according to the stages of their meiotic maturity. Oocytes classification traditionally is done manually during their observation under the light microscope. The paper is part of the bigger task, the development of the system for optimal oocyte and embryos selection. In the hereby work, we present the method for the automatic classification of oocytes based on their images, that employs DNN algorithms.ResultsFor the purpose of oocyte class determination, two structures based on deep neural networks were applied. DeepLabV3Plus was responsible for the analysis of oocyte images in order to extract specific regions of oocyte images. Then extracted components were transferred to the network, inspired by the SqueezeNet architecture, for the purpose of oocyte type classification. The structure of this network was refined by a genetic algorithm in order to improve generalization abilities as well as reduce the network’s FLOPs thus minimizing inference time. As a result, Acc¯\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{Acc}$$\end{document} at the level of 0.964 was obtained at the level of the validation set and 0.957 at the level of the test set. Generated neural networks as well as code that allows running the processing pipe were made publicly available.ConclusionsIn this paper, the complete pipeline was proposed that is able to automatically classify human oocytes into three classes MI, MII, and PI based on the oocytes’ microscopic image.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310118880441ZK.pdf 1223KB PDF download
13690_2023_1170_Article_IEq167.gif 1KB Image download
Fig. 6 2149KB Image download
MediaObjects/41408_2023_917_MOESM1_ESM.pdf 1732KB PDF download
Fig. 4 954KB Image download
MediaObjects/42004_2023_1007_MOESM1_ESM.pdf 3331KB PDF download
Fig. 4 964KB Image download
13690_2023_1170_Article_IEq173.gif 1KB Image download
13690_2023_1170_Article_IEq67.gif 1KB Image download
12938_2023_1153_Article_IEq11.gif 1KB Image download
12888_2023_5142_Article_IEq2.gif 1KB Image download
MediaObjects/41408_2023_910_MOESM1_ESM.docx 353KB Other download
12888_2023_5142_Article_IEq6.gif 1KB Image download
12888_2023_5142_Article_IEq8.gif 1KB Image download
13690_2023_1170_Article_IEq196.gif 1KB Image download
13690_2023_1170_Article_IEq198.gif 1KB Image download
40795_2023_760_Article_IEq26.gif 1KB Image download
Fig. 6 622KB Image download
12888_2023_5142_Article_IEq26.gif 1KB Image download
40360_2023_687_Article_IEq1.gif 1KB Image download
12938_2023_1153_Article_IEq25.gif 1KB Image download
Fig. 1 1720KB Image download
Fig. 2 201KB Image download
13690_2023_1170_Article_IEq223.gif 1KB Image download
Fig. 4 185KB Image download
MediaObjects/12864_2023_9587_MOESM3_ESM.xlsx 85KB Other download
12888_2023_5172_Article_IEq8.gif 1KB Image download
Fig. 2 1857KB Image download
Fig. 2 209KB Image download
13690_2023_1170_Article_IEq83.gif 1KB Image download
MediaObjects/13100_2023_301_MOESM7_ESM.pdf 425KB PDF download
Fig. 2 2464KB Image download
562KB Image download
Fig. 2 1067KB Image download
Fig. 3 919KB Image download
Fig. 2 203KB Image download
Fig. 7 171KB Image download
12888_2023_5172_Article_IEq17.gif 1KB Image download
Fig. 6 749KB Image download
Fig. 5 1835KB Image download
Fig. 1 472KB Image download
Fig. 2 357KB Image download
13690_2023_1170_Article_IEq111.gif 1KB Image download
13690_2023_1170_Article_IEq112.gif 1KB Image download
13690_2023_1170_Article_IEq113.gif 1KB Image download
12888_2023_5172_Article_IEq26.gif 1KB Image download
12888_2023_5172_Article_IEq27.gif 1KB Image download
MediaObjects/42004_2023_1004_MOESM3_ESM.pdf 127KB PDF download
12888_2023_5172_Article_IEq29.gif 1KB Image download
MediaObjects/13068_2023_2396_MOESM4_ESM.tif 23548KB Other download
Fig. 4 380KB Image download
Fig. 1 95KB Image download
13690_2023_1170_Article_IEq4.gif 1KB Image download
13690_2023_1170_Article_IEq11.gif 1KB Image download
Fig. 4 1655KB Image download
MediaObjects/13690_2023_1188_MOESM5_ESM.pdf 178KB PDF download
MediaObjects/42004_2023_1000_MOESM6_ESM.pdf 1742KB PDF download
Fig. 1 161KB Image download
12888_2023_5172_Article_IEq35.gif 1KB Image download
12888_2023_5172_Article_IEq36.gif 1KB Image download
12888_2023_5172_Article_IEq37.gif 1KB Image download
Fig. 2 340KB Image download
12888_2023_5172_Article_IEq38.gif 1KB Image download
Fig. 3 53KB Image download
13690_2023_1177_Figc_HTML.png 15KB Image download
Fig. 8 184KB Image download
Fig. 7 1379KB Image download
12936_2023_4724_Article_IEq74.gif 1KB Image download
Fig. 2 600KB Image download
MediaObjects/12951_2023_2086_MOESM1_ESM.docx 179KB Other download
Fig. 1 664KB Image download
12936_2023_4724_Article_IEq79.gif 1KB Image download
Fig. 5 25KB Image download
【 图 表 】

Fig. 5

12936_2023_4724_Article_IEq79.gif

Fig. 1

Fig. 2

12936_2023_4724_Article_IEq74.gif

Fig. 7

Fig. 8

13690_2023_1177_Figc_HTML.png

Fig. 3

12888_2023_5172_Article_IEq38.gif

Fig. 2

12888_2023_5172_Article_IEq37.gif

12888_2023_5172_Article_IEq36.gif

12888_2023_5172_Article_IEq35.gif

Fig. 1

Fig. 4

13690_2023_1170_Article_IEq11.gif

13690_2023_1170_Article_IEq4.gif

Fig. 1

Fig. 4

12888_2023_5172_Article_IEq29.gif

12888_2023_5172_Article_IEq27.gif

12888_2023_5172_Article_IEq26.gif

13690_2023_1170_Article_IEq113.gif

13690_2023_1170_Article_IEq112.gif

13690_2023_1170_Article_IEq111.gif

Fig. 2

Fig. 1

Fig. 5

Fig. 6

12888_2023_5172_Article_IEq17.gif

Fig. 7

Fig. 2

Fig. 3

Fig. 2

Fig. 2

13690_2023_1170_Article_IEq83.gif

Fig. 2

Fig. 2

12888_2023_5172_Article_IEq8.gif

Fig. 4

13690_2023_1170_Article_IEq223.gif

Fig. 2

Fig. 1

12938_2023_1153_Article_IEq25.gif

40360_2023_687_Article_IEq1.gif

12888_2023_5142_Article_IEq26.gif

Fig. 6

40795_2023_760_Article_IEq26.gif

13690_2023_1170_Article_IEq198.gif

13690_2023_1170_Article_IEq196.gif

12888_2023_5142_Article_IEq8.gif

12888_2023_5142_Article_IEq6.gif

12888_2023_5142_Article_IEq2.gif

12938_2023_1153_Article_IEq11.gif

13690_2023_1170_Article_IEq67.gif

13690_2023_1170_Article_IEq173.gif

Fig. 4

Fig. 4

Fig. 6

13690_2023_1170_Article_IEq167.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  文献评价指标  
  下载次数:43次 浏览次数:1次