期刊论文详细信息
Journal of NeuroEngineering and Rehabilitation
Generating synthetic gait patterns based on benchmark datasets for controlling prosthetic legs
Research
Levi J. Hargrove1  Minjae Kim1 
[1] Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA;Regenstein Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA;
关键词: Generative adversarial network;    Benchmark data;    Impedance control;    Synthetic impedance parameters;   
DOI  :  10.1186/s12984-023-01232-6
 received in 2023-01-05, accepted in 2023-08-08,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundProsthetic legs help individuals with an amputation regain locomotion. Recently, deep neural network (DNN)-based control methods, which take advantage of the end-to-end learning capability of the network, have been proposed. One prominent challenge for these learning-based approaches is obtaining data for the training, particularly for the training of a mid-level controller. In this study, we propose a method for generating synthetic gait patterns (vertical load and lower limb joint angles) using a generative adversarial network (GAN). This approach enables a mid-level controller to execute ambulation modes that are not included in the training datasets.MethodsThe conditional GAN is trained on benchmark datasets that contain the gait data of individuals without amputation; synthetic gait patterns are generated from the user input. Further, a DNN-based controller for the generation of impedance parameters is trained using the synthetic gait pattern and the corresponding synthetic stiffness and damping coefficients.ResultsThe trained GAN generated synthetic gait patterns with a coefficient of determination of 0.97 and a structural similarity index of 0.94 relative to benchmark data that were not included in the training datasets. We trained a DNN-based controller using the GAN-generated synthetic gait patterns for level-ground walking, standing-to-sitting motion, and sitting-to-standing motion. Four individuals without amputation participated in bypass testing and demonstrated the ambulation modes. The model successfully generated control parameters for the knee and ankle based on thigh angle and vertical load.ConclusionsThis study demonstrates that synthetic gait patterns can be used to train DNN models for impedance control. We believe a conditional GAN trained on benchmark datasets can provide reliable gait data for ambulation modes that are not included in its training datasets. Thus, designing gait data using a conditional GAN could facilitate the efficient and effective training of controllers for prosthetic legs.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310116454198ZK.pdf 4236KB PDF download
Scheme 1 590KB Image download
Fig. 2 1420KB Image download
Fig. 1 472KB Image download
MediaObjects/13227_2023_218_MOESM4_ESM.pdf 1656KB PDF download
13690_2023_1170_Article_IEq111.gif 1KB Image download
MediaObjects/13068_2023_2396_MOESM1_ESM.tif 5512KB Other download
Fig. 1 618KB Image download
13063_2023_7595_Article_IEq4.gif 1KB Image download
Fig. 4 519KB Image download
13690_2023_1170_Article_IEq4.gif 1KB Image download
Fig. 3 53KB Image download
Fig. 6 1066KB Image download
41408_2023_919_Article_IEq13.gif 1KB Image download
41408_2023_919_Article_IEq14.gif 1KB Image download
41408_2023_919_Article_IEq16.gif 1KB Image download
12888_2023_5172_Article_IEq46.gif 1KB Image download
12888_2023_5172_Article_IEq47.gif 1KB Image download
12888_2023_5172_Article_IEq48.gif 1KB Image download
Fig. 1 457KB Image download
12888_2023_5172_Article_IEq53.gif 1KB Image download
12888_2023_5172_Article_IEq50.gif 1KB Image download
13690_2023_1170_Article_IEq19.gif 1KB Image download
Fig. 1 588KB Image download
Fig. 2 217KB Image download
MediaObjects/12951_2023_2086_MOESM1_ESM.docx 179KB Other download
Fig. 4 186KB Image download
Fig. 1 664KB Image download
Fig. 3 180KB Image download
13063_2023_7612_Figbt_HTML.png 4KB Image download
Fig. 1 76KB Image download
Fig. 7 1792KB Image download
13690_2023_1170_Article_IEq137.gif 1KB Image download
MediaObjects/13046_2023_2837_MOESM1_ESM.tif 2985KB Other download
Fig. 9 5595KB Image download
Fig. 1 67KB Image download
MediaObjects/40249_2023_1139_MOESM3_ESM.docx 18KB Other download
12862_2023_2158_Article_IEq31.gif 1KB Image download
Fig. 3 704KB Image download
13731_2023_332_Article_IEq6.gif 1KB Image download
MediaObjects/41408_2023_922_MOESM1_ESM.pptx 49KB Other download
Fig. 9 439KB Image download
MediaObjects/41408_2023_922_MOESM4_ESM.docx 12KB Other download
MediaObjects/12888_2023_5147_MOESM1_ESM.pdf 402KB PDF download
Fig.1 85KB Image download
13690_2023_1187_Article_IEq1.gif 1KB Image download
Fig. 7 1210KB Image download
Fig. 5 123KB Image download
MediaObjects/12888_2023_5155_MOESM5_ESM.docx 17KB Other download
Fig. 1 3263KB Image download
13690_2023_1170_Article_IEq155.gif 1KB Image download
Fig. 4 747KB Image download
Fig. 2 2141KB Image download
MediaObjects/41408_2023_897_MOESM1_ESM.pdf 3846KB PDF download
MediaObjects/12888_2023_5171_MOESM1_ESM.docx 24KB Other download
13690_2023_1170_Article_IEq43.gif 1KB Image download
Fig. 2 172KB Image download
13690_2023_1170_Article_IEq45.gif 1KB Image download
Fig. 1 4774KB Image download
Fig. 1 253KB Image download
Fig. 8 608KB Image download
Fig. 5 2762KB Image download
Fig. 12 152KB Image download
MediaObjects/13100_2023_300_MOESM2_ESM.pdf 4314KB PDF download
Fig. 2 208KB Image download
Fig. 2 96KB Image download
Fig. 1 405KB Image download
13690_2023_1170_Article_IEq156.gif 1KB Image download
13690_2023_1170_Article_IEq51.gif 1KB Image download
【 图 表 】

13690_2023_1170_Article_IEq51.gif

13690_2023_1170_Article_IEq156.gif

Fig. 1

Fig. 2

Fig. 2

Fig. 12

Fig. 5

Fig. 8

Fig. 1

Fig. 1

13690_2023_1170_Article_IEq45.gif

Fig. 2

13690_2023_1170_Article_IEq43.gif

Fig. 2

Fig. 4

13690_2023_1170_Article_IEq155.gif

Fig. 1

Fig. 5

Fig. 7

13690_2023_1187_Article_IEq1.gif

Fig.1

Fig. 9

13731_2023_332_Article_IEq6.gif

Fig. 3

12862_2023_2158_Article_IEq31.gif

Fig. 1

Fig. 9

13690_2023_1170_Article_IEq137.gif

Fig. 7

Fig. 1

13063_2023_7612_Figbt_HTML.png

Fig. 3

Fig. 1

Fig. 4

Fig. 2

Fig. 1

13690_2023_1170_Article_IEq19.gif

12888_2023_5172_Article_IEq50.gif

12888_2023_5172_Article_IEq53.gif

Fig. 1

12888_2023_5172_Article_IEq48.gif

12888_2023_5172_Article_IEq47.gif

12888_2023_5172_Article_IEq46.gif

41408_2023_919_Article_IEq16.gif

41408_2023_919_Article_IEq14.gif

41408_2023_919_Article_IEq13.gif

Fig. 6

Fig. 3

13690_2023_1170_Article_IEq4.gif

Fig. 4

13063_2023_7595_Article_IEq4.gif

Fig. 1

13690_2023_1170_Article_IEq111.gif

Fig. 1

Fig. 2

Scheme 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  文献评价指标  
  下载次数:8次 浏览次数:1次