期刊论文详细信息
BMC Bioinformatics
Identification of plant vacuole proteins by using graph neural network and contact maps
Research
Jiazi Chen1  Naoki Iwamori1  Yuehui Chen2  Jin Sun3  Jianan Sui4 
[1] Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-Shi, Fukuoka, Japan;School of Artificial Intelligence Institute and Information Science and Engineering, University of Jinan, Jinan, China;School of Computer Science and Engineering, University of Electronic Science and Technology of China, 611731, Chengdu, China;School of Information Science and Engineering, University of Jinan, Jinan, China;
关键词: Plant vacuole proteins;    Peroxisomal proteins;    SeqVec;    AlphaFold2;    Graph convolutional neural network;   
DOI  :  10.1186/s12859-023-05475-x
 received in 2023-05-13, accepted in 2023-09-12,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Plant vacuoles are essential organelles in the growth and development of plants, and accurate identification of their proteins is crucial for understanding their biological properties. In this study, we developed a novel model called GraphIdn for the identification of plant vacuole proteins. The model uses SeqVec, a deep representation learning model, to initialize the amino acid sequence. We utilized the AlphaFold2 algorithm to obtain the structural information of corresponding plant vacuole proteins, and then fed the calculated contact maps into a graph convolutional neural network. GraphIdn achieved accuracy values of 88.51% and 89.93% in independent testing and fivefold cross-validation, respectively, outperforming previous state-of-the-art predictors. As far as we know, this is the first model to use predicted protein topology structure graphs to identify plant vacuole proteins. Furthermore, we assessed the effectiveness and generalization capability of our GraphIdn model by applying it to identify and locate peroxisomal proteins, which yielded promising outcomes. The source code and datasets can be accessed at https://github.com/SJNNNN/GraphIdn.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310115430114ZK.pdf 3127KB PDF download
Fig. 2 345KB Image download
Fig. 2 831KB Image download
12888_2023_5172_Article_IEq13.gif 1KB Image download
Fig. 3 919KB Image download
MediaObjects/13395_2023_324_MOESM1_ESM.docx 7665KB Other download
13015_2023_241_Article_IEq346.gif 1KB Image download
42004_2023_995_Article_IEq36.gif 1KB Image download
Fig. 4 279KB Image download
13690_2023_1170_Article_IEq115.gif 1KB Image download
12888_2023_5172_Article_IEq29.gif 1KB Image download
MediaObjects/13068_2023_2396_MOESM4_ESM.tif 23548KB Other download
12888_2023_5172_Article_IEq34.gif 1KB Image download
12888_2023_5172_Article_IEq36.gif 1KB Image download
Fig. 2 340KB Image download
MediaObjects/40644_2023_604_MOESM1_ESM.docx 35KB Other download
Fig. 2 243KB Image download
Fig. 3 180KB Image download
Fig. 1 76KB Image download
Fig. 4 1213KB Image download
Fig. 3 5790KB Image download
Fig. 3 427KB Image download
MediaObjects/13046_2023_2836_MOESM1_ESM.png 4830KB Other download
Fig. 4 336KB Image download
Fig. 6 69KB Image download
MediaObjects/12888_2023_5155_MOESM1_ESM.docx 14KB Other download
Fig. 1 49KB Image download
Fig. 1 1619KB Image download
Fig. 1 648KB Image download
Fig. 4 1878KB Image download
Fig. 5 1258KB Image download
13690_2023_1170_Article_IEq158.gif 1KB Image download
Fig. 6 572KB Image download
Fig. 1 1252KB Image download
Fig. 2 132KB Image download
Fig. 10 197KB Image download
Fig. 3 471KB Image download
Fig. 2 405KB Image download
Fig. 4 1174KB Image download
Fig. 5 547KB Image download
13690_2023_1170_Article_IEq58.gif 1KB Image download
40249_2023_1135_Article_IEq4.gif 1KB Image download
【 图 表 】

40249_2023_1135_Article_IEq4.gif

13690_2023_1170_Article_IEq58.gif

Fig. 5

Fig. 4

Fig. 2

Fig. 3

Fig. 10

Fig. 2

Fig. 1

Fig. 6

13690_2023_1170_Article_IEq158.gif

Fig. 5

Fig. 4

Fig. 1

Fig. 1

Fig. 1

Fig. 6

Fig. 4

Fig. 3

Fig. 3

Fig. 4

Fig. 1

Fig. 3

Fig. 2

Fig. 2

12888_2023_5172_Article_IEq36.gif

12888_2023_5172_Article_IEq34.gif

12888_2023_5172_Article_IEq29.gif

13690_2023_1170_Article_IEq115.gif

Fig. 4

42004_2023_995_Article_IEq36.gif

13015_2023_241_Article_IEq346.gif

Fig. 3

12888_2023_5172_Article_IEq13.gif

Fig. 2

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  文献评价指标  
  下载次数:5次 浏览次数:0次