期刊论文详细信息
BMC Medical Imaging
Point-wise spatial network for identifying carcinoma at the upper digestive and respiratory tract
Research
Maoli Duan1  Lei Zhou2  Huaili Jiang2  Guangyao Li2  Na Shen2  Cuicui Lv2  Jiaye Ding2  Xinsheng Huang2  Wenfeng Wang3  Kongyang Chen4 
[1] Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden;Department of Otolaryngology Head and Neck Surgery, Karolinska University Hospital, 171 76, Stockholm, Sweden;Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital Affiliated to Fudan University, Xuhui District, 180 Fenglin Road,, 200032, Shanghai, P. R. China;Institute of Artificial Intelligence and Blockchain, Guangzhou University, 510006, Guangzhou, P. R. China;Institute of Artificial Intelligence and Blockchain, Guangzhou University, 510006, Guangzhou, P. R. China;Pazhou Lab, 510330, Guangzhou, P. R. China;
关键词: Artificial intelligence;    Oral pharynx;    Hypopharynx;    Larynx;    Nasopharynx;   
DOI  :  10.1186/s12880-023-01076-5
 received in 2022-10-12, accepted in 2023-08-07,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

ProblemArtificial intelligence has been widely investigated for diagnosis and treatment strategy design, with some models proposed for detecting oral pharyngeal, nasopharyngeal, or laryngeal carcinoma. However, no comprehensive model has been established for these regions.AimOur hypothesis was that a common pattern in the cancerous appearance of these regions could be recognized and integrated into a single model, thus improving the efficacy of deep learning models.MethodsWe utilized a point-wise spatial attention network model to perform semantic segmentation in these regions.ResultsOur study demonstrated an excellent outcome, with an average mIoU of 86.3%, and an average pixel accuracy of 96.3%.ConclusionThe research confirmed that the mucosa of oral pharyngeal, nasopharyngeal, and laryngeal regions may share a common appearance, including the appearance of tumors, which can be recognized by a single artificial intelligence model. Therefore, a deep learning model could be constructed to effectively recognize these tumors.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310112806735ZK.pdf 1342KB PDF download
13690_2023_1170_Article_IEq162.gif 1KB Image download
Fig. 8 102KB Image download
13690_2023_1170_Article_IEq64.gif 1KB Image download
13690_2023_1170_Article_IEq173.gif 1KB Image download
Fig. 3 38KB Image download
12888_2023_5142_Article_IEq2.gif 1KB Image download
12888_2023_5142_Article_IEq4.gif 1KB Image download
Fig. 8 2622KB Image download
13063_2023_7612_Figx_HTML.png 4KB Image download
Fig. 2 5714KB Image download
13690_2023_1170_Article_IEq215.gif 1KB Image download
Fig. 2 1724KB Image download
Fig. 4 37KB Image download
Fig. 2 163KB Image download
Fig. 4 710KB Image download
Fig. 3 298KB Image download
【 图 表 】

Fig. 3

Fig. 4

Fig. 2

Fig. 4

Fig. 2

13690_2023_1170_Article_IEq215.gif

Fig. 2

13063_2023_7612_Figx_HTML.png

Fig. 8

12888_2023_5142_Article_IEq4.gif

12888_2023_5142_Article_IEq2.gif

Fig. 3

13690_2023_1170_Article_IEq173.gif

13690_2023_1170_Article_IEq64.gif

Fig. 8

13690_2023_1170_Article_IEq162.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  文献评价指标  
  下载次数:1次 浏览次数:0次