| BMC Oral Health | |
| Intra-oral scan segmentation using deep learning | |
| Research | |
| Tabea Flügge1  Tong Xi2  Steven Kempers3  Shankeeth Vinayahalingam4  Bram van Ginneken5  Tzu-Ming Harry Hsu6  Julian Schoep7  David Anssari Moin7  Marcel Hanisch8  | |
| [1] Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Department of Oral and Maxillofacial Surgery, Hindenburgdamm 30, 12203, Berlin, Germany;Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;Department of Artificial Intelligence, Radboud University, Nijmegen, the Netherlands;Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;Department of Artificial Intelligence, Radboud University, Nijmegen, the Netherlands;Department of Oral and Maxillofacial Surgery, Universitätsklinikum Münster, Münster, Germany;Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;MIT Computer Science & Artificial Intelligence Laboratory, 32 Vassar St, 02139, Cambridge, MA, USA;Promaton Co. Ltd, 1076 GR, Amsterdam, The Netherlands;Promaton Co. Ltd, 1076 GR, Amsterdam, The Netherlands;Department of Oral and Maxillofacial Surgery, Universitätsklinikum Münster, Münster, Germany; | |
| 关键词: Deep learning; Artificial intelligence; Intra-oral scan; Computer-assisted planning; Digital imaging; | |
| DOI : 10.1186/s12903-023-03362-8 | |
| received in 2023-04-07, accepted in 2023-08-26, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
ObjectiveIntra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantology, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using deep learning.Material and methodsAs a reference, 1750 OS were manually segmented and labeled. A deep-learning approach based on PointCNN and 3D U-net in combination with a rule-based heuristic algorithm and a combinatorial search algorithm was trained and validated on 1400 OS. Subsequently, the trained algorithm was applied to a test set consisting of 350 OS. The intersection over union (IoU), as a measure of accuracy, was calculated to quantify the degree of similarity between the annotated ground truth and the model predictions.ResultsThe model achieved accurate teeth segmentations with a mean IoU score of 0.915. The FDI labels of the teeth were predicted with a mean accuracy of 0.894. The optical inspection showed excellent position agreements between the automatically and manually segmented teeth components. Minor flaws were mostly seen at the edges.ConclusionThe proposed method forms a promising foundation for time-effective and observer-independent teeth segmentation and labeling on intra-oral scans.Clinical significanceDeep learning may assist clinicians in virtual treatment planning in orthodontics, prosthetics, implantology, and orthognathic surgery. The impact of using such models in clinical practice should be explored.
【 授权许可】
CC BY
© BioMed Central Ltd., part of Springer Nature 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202310111955803ZK.pdf | 1959KB | ||
| Fig. 2 | 364KB | Image | |
| MediaObjects/12936_2023_4673_MOESM3_ESM.tif | 80KB | Other | |
| Fig. 1 | 563KB | Image | |
| Fig. 6 | 2055KB | Image | |
| Fig. 43 | 51KB | Image | |
| 13690_2023_1170_Article_IEq98.gif | 1KB | Image | |
| Fig. 6 | 3544KB | Image | |
| Fig. 4 | 2086KB | Image | |
| MediaObjects/13690_2023_1170_MOESM1_ESM.docx | 50KB | Other | |
| Fig. 2 | 366KB | Image | |
| Fig. 5 | 711KB | Image | |
| 12888_2023_5168_Article_IEq1.gif | 1KB | Image | |
| Fig. 1 | 262KB | Image | |
| 12888_2023_5168_Article_IEq2.gif | 1KB | Image | |
| Fig. 1 | 60KB | Image | |
| 13690_2023_1170_Article_IEq108.gif | 1KB | Image | |
| Fig. 1 | 322KB | Image | |
| Fig. 2 | 357KB | Image | |
| 12888_2023_5172_Article_IEq22.gif | 1KB | Image | |
| 13690_2023_1170_Article_IEq111.gif | 1KB | Image | |
| 12888_2023_5172_Article_IEq23.gif | 1KB | Image | |
| MediaObjects/13068_2023_2396_MOESM1_ESM.tif | 5512KB | Other | |
| Fig. 1 | 142KB | Image | |
| Fig. 3 | 317KB | Image | |
| Fig. 3 | 118KB | Image | |
| Fig. 4 | 982KB | Image | |
| MediaObjects/12888_2023_5151_MOESM3_ESM.docx | 42KB | Other | |
| MediaObjects/12944_2023_1911_MOESM1_ESM.doc | 45KB | Other | |
| MediaObjects/12888_2023_5138_MOESM1_ESM.docx | 35KB | Other | |
| 42004_2023_995_Article_IEq42.gif | 1KB | Image | |
| MediaObjects/12954_2023_840_MOESM1_ESM.pdf | 38KB | ||
| MediaObjects/12951_2023_2105_MOESM3_ESM.xlsx | 398KB | Other | |
| MediaObjects/12864_2023_9667_MOESM2_ESM.txt | 296KB | Other | |
| Fig. 1 | 308KB | Image | |
| 13690_2023_1170_Article_IEq1.gif | 1KB | Image | |
| MediaObjects/13068_2023_2396_MOESM3_ESM.tif | 2635KB | Other | |
| 13690_2023_1170_Article_IEq3.gif | 1KB | Image |
【 图 表 】
13690_2023_1170_Article_IEq3.gif
13690_2023_1170_Article_IEq1.gif
Fig. 1
42004_2023_995_Article_IEq42.gif
Fig. 4
Fig. 3
Fig. 3
Fig. 1
12888_2023_5172_Article_IEq23.gif
13690_2023_1170_Article_IEq111.gif
12888_2023_5172_Article_IEq22.gif
Fig. 2
Fig. 1
13690_2023_1170_Article_IEq108.gif
Fig. 1
12888_2023_5168_Article_IEq2.gif
Fig. 1
12888_2023_5168_Article_IEq1.gif
Fig. 5
Fig. 2
Fig. 4
Fig. 6
13690_2023_1170_Article_IEq98.gif
Fig. 43
Fig. 6
Fig. 1
Fig. 2
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
PDF