期刊论文详细信息
BMC Oral Health
Intra-oral scan segmentation using deep learning
Research
Tabea Flügge1  Tong Xi2  Steven Kempers3  Shankeeth Vinayahalingam4  Bram van Ginneken5  Tzu-Ming Harry Hsu6  Julian Schoep7  David Anssari Moin7  Marcel Hanisch8 
[1] Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Department of Oral and Maxillofacial Surgery, Hindenburgdamm 30, 12203, Berlin, Germany;Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;Department of Artificial Intelligence, Radboud University, Nijmegen, the Netherlands;Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;Department of Artificial Intelligence, Radboud University, Nijmegen, the Netherlands;Department of Oral and Maxillofacial Surgery, Universitätsklinikum Münster, Münster, Germany;Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands;MIT Computer Science & Artificial Intelligence Laboratory, 32 Vassar St, 02139, Cambridge, MA, USA;Promaton Co. Ltd, 1076 GR, Amsterdam, The Netherlands;Promaton Co. Ltd, 1076 GR, Amsterdam, The Netherlands;Department of Oral and Maxillofacial Surgery, Universitätsklinikum Münster, Münster, Germany;
关键词: Deep learning;    Artificial intelligence;    Intra-oral scan;    Computer-assisted planning;    Digital imaging;   
DOI  :  10.1186/s12903-023-03362-8
 received in 2023-04-07, accepted in 2023-08-26,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

ObjectiveIntra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantology, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using deep learning.Material and methodsAs a reference, 1750 OS were manually segmented and labeled. A deep-learning approach based on PointCNN and 3D U-net in combination with a rule-based heuristic algorithm and a combinatorial search algorithm was trained and validated on 1400 OS. Subsequently, the trained algorithm was applied to a test set consisting of 350 OS. The intersection over union (IoU), as a measure of accuracy, was calculated to quantify the degree of similarity between the annotated ground truth and the model predictions.ResultsThe model achieved accurate teeth segmentations with a mean IoU score of 0.915. The FDI labels of the teeth were predicted with a mean accuracy of 0.894. The optical inspection showed excellent position agreements between the automatically and manually segmented teeth components. Minor flaws were mostly seen at the edges.ConclusionThe proposed method forms a promising foundation for time-effective and observer-independent teeth segmentation and labeling on intra-oral scans.Clinical significanceDeep learning may assist clinicians in virtual treatment planning in orthodontics, prosthetics, implantology, and orthognathic surgery. The impact of using such models in clinical practice should be explored.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310111955803ZK.pdf 1959KB PDF download
Fig. 2 364KB Image download
MediaObjects/12936_2023_4673_MOESM3_ESM.tif 80KB Other download
Fig. 1 563KB Image download
Fig. 6 2055KB Image download
Fig. 43 51KB Image download
13690_2023_1170_Article_IEq98.gif 1KB Image download
Fig. 6 3544KB Image download
Fig. 4 2086KB Image download
MediaObjects/13690_2023_1170_MOESM1_ESM.docx 50KB Other download
Fig. 2 366KB Image download
Fig. 5 711KB Image download
12888_2023_5168_Article_IEq1.gif 1KB Image download
Fig. 1 262KB Image download
12888_2023_5168_Article_IEq2.gif 1KB Image download
Fig. 1 60KB Image download
13690_2023_1170_Article_IEq108.gif 1KB Image download
Fig. 1 322KB Image download
Fig. 2 357KB Image download
12888_2023_5172_Article_IEq22.gif 1KB Image download
13690_2023_1170_Article_IEq111.gif 1KB Image download
12888_2023_5172_Article_IEq23.gif 1KB Image download
MediaObjects/13068_2023_2396_MOESM1_ESM.tif 5512KB Other download
Fig. 1 142KB Image download
Fig. 3 317KB Image download
Fig. 3 118KB Image download
Fig. 4 982KB Image download
MediaObjects/12888_2023_5151_MOESM3_ESM.docx 42KB Other download
MediaObjects/12944_2023_1911_MOESM1_ESM.doc 45KB Other download
MediaObjects/12888_2023_5138_MOESM1_ESM.docx 35KB Other download
42004_2023_995_Article_IEq42.gif 1KB Image download
MediaObjects/12954_2023_840_MOESM1_ESM.pdf 38KB PDF download
MediaObjects/12951_2023_2105_MOESM3_ESM.xlsx 398KB Other download
MediaObjects/12864_2023_9667_MOESM2_ESM.txt 296KB Other download
Fig. 1 308KB Image download
13690_2023_1170_Article_IEq1.gif 1KB Image download
MediaObjects/13068_2023_2396_MOESM3_ESM.tif 2635KB Other download
13690_2023_1170_Article_IEq3.gif 1KB Image download
【 图 表 】

13690_2023_1170_Article_IEq3.gif

13690_2023_1170_Article_IEq1.gif

Fig. 1

42004_2023_995_Article_IEq42.gif

Fig. 4

Fig. 3

Fig. 3

Fig. 1

12888_2023_5172_Article_IEq23.gif

13690_2023_1170_Article_IEq111.gif

12888_2023_5172_Article_IEq22.gif

Fig. 2

Fig. 1

13690_2023_1170_Article_IEq108.gif

Fig. 1

12888_2023_5168_Article_IEq2.gif

Fig. 1

12888_2023_5168_Article_IEq1.gif

Fig. 5

Fig. 2

Fig. 4

Fig. 6

13690_2023_1170_Article_IEq98.gif

Fig. 43

Fig. 6

Fig. 1

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  文献评价指标  
  下载次数:7次 浏览次数:1次