Frontiers in Nutrition | |
The effects of Ascophyllum nodosum, Camellia sinensis-leaf extract, and their joint interventions on glycolipid and energy metabolism in obese mice | |
Nutrition | |
Haoqiu Li1  Zifu Zhao1  Xiuzhen Jia1  Haotian Feng1  Jinrui Du1  Jingyu Hao1  Jian He1  Yan Liu1  Yuhan Xu2  Hongwei Li2  Meizhen Zhu2  Qiaoling Xie2  Wei Zhang2  | |
[1] Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China;Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China;State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China;School of Public Health, Xiamen University, Xiamen, China; | |
关键词: obesity; seaweed extract; green tea extract; respiratory rhythm; intestinal flora; glycolipid metabolism; | |
DOI : 10.3389/fnut.2023.1242157 | |
received in 2023-06-18, accepted in 2023-07-31, 发布年份 2023 | |
来源: Frontiers | |
【 摘 要 】
ObjectivesObesity is often associated with glucolipid and/or energy metabolism disorders. Ascophyllum nodosum extract (seaweed extract, SE) and Camellia sinensis-leaf extract (tea extract, TE) have been reported to promote positive metabolic effects through different mechanisms. We investigated the effects of SE and TE on metabolic homeostasis in diet-induced obese mice and discussed their functional characteristics.MethodsMale C57BL/6J mice fed with high-fat diets for 8 weeks were established as obese models and subsequently divided into different intervention groups, followed by SE, TE, and their joint interventions for 10 weeks. Body weight and food intake were monitored. Fasting glucose and oral glucose tolerance tests were interspersed during the experiment. After the intervention, the effects on obesity control were assessed based on body composition, liver pathology section, blood lipids and glucose, respiratory exchange ratio (RER), energy expenditure (EE1, EE2, and EE3), inflammatory factors, lipid anabolism enzymes, and gut flora of the obese mice.ResultsAfter continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower ~4.93 g, vs. HFD 38.02 g), peri-testicular fat masses (lower ~0.61 g, vs. HFD 1.92 g), and perirenal fat masses (lower ~0.21 g, vs. HFD mice 0.70 g). All interventions prevented diet-induced increases in plasma levels of glucose, adiponectin, leptin, and the inflammatory factors IL-1β and TNF-α. The RER was modified by the interventions, while the rhythm of the RER was not. Blood lipids (total cholesterol, triglycerides, and LDL) decreased and were associated with lower lipid anabolism enzymes. In addition, the SE and TE interventions altered the structure and abundance of specific flora. Different interventions inhibited the growth of different genera positively associated with obesity (Escherichia–Shigella, Helicobacter, etc.) and promoted the growth of Akkermansia and Bacteroides, thus affecting the chronic inflammatory state.ConclusionSE and TE both have synergistic effects on weight control and glucolipid metabolism regulation by improving insulin sensitivity and reducing lipid synthesis-related enzyme expression, whereas the combination of SE and TE (3:1) has a better effect on regulating energy metabolism and inhibiting chronic inflammation.
【 授权许可】
Unknown
Copyright © 2023 Xu, Jia, Zhang, Xie, Zhu, Zhao, Hao, Li, Du, Liu, Feng, He and Li.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202310109261555ZK.pdf | 4857KB | download |