期刊论文详细信息
Frontiers in Nutrition
Ketogenic diet alleviates renal fibrosis in mice by enhancing fatty acid oxidation through the free fatty acid receptor 3 pathway
Nutrition
Yang Qiu1  Chenqi Lu1  Yanan Xie1  Rui Cao1  Xiaofan Hu1  Cong Xu1  Jun Yang2 
[1] Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China;null;
关键词: ketogenic diet;    renal fibrosis;    β-hydroxybutyrate;    fatty acid oxidation;    free fatty acid receptor 3;   
DOI  :  10.3389/fnut.2023.1127845
 received in 2022-12-21, accepted in 2023-02-27,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

IntroductionThe ketogenic diet (KD), as a dietary intervention, has gained importance in the treatment of solid organ structural remodeling, but its role in renal fibrosis has not been explored.MethodsMale C57BL/6 mice were fed a normal diet or a KD for 6 weeks prior to unilateral ureteral obstruction (UUO), a well-established in vivo model of renal fibrosis in rodents. Seven days after UUO, serum and kidney samples were collected. Serum β-hydroxybutyrate (β-OHB) concentrations and renal fibrosis were assessed. NRK52E cells were treated with TGFβ1, a fibrosis-inducing cytokine, and with or without β-OHB, a ketone body metabolized by KD, to investigate the mechanism underlying renal fibrosis.ResultsKD significantly enhanced serum β-OHB levels in mice. Histological analysis revealed that KD alleviated structural destruction and fibrosis in obstructed kidneys and reduced the expression of the fibrosis protein markers α-SMA, Col1a1, and Col3a1. Expression of the rate-limiting enzymes involved in fatty acid oxidation (FAO), Cpt1a and Acox1, significantly decreased after UUO and were upregulated by KD. However, the protective effect of KD was abolished by etomoxir (a Cpt1a inhibitor). Besides, our study observed that KD significantly suppressed UUO-induced macrophage infiltration and the expression of IL-6 in the obstructive kidneys. In NRK52E cells, fibrosis-related signaling was increased by TGFβ1 and reduced by β-OHB. β-OHB treatment restored the impaired expression of Cpt1a. The effect of β-OHB was blocked by siRNA targeting free fatty acid receptor 3 (FFAR3), suggesting that β-OHB might function through the FFAR3-dependent pathway.DiscussionOur results highlight that KD attenuates UUO-induced renal fibrosis by enhancing FAO via the FFAR3-dependent pathway, which provides a promising dietary therapy for renal fibrosis.

【 授权许可】

Unknown   
Copyright © 2023 Qiu, Hu, Xu, Lu, Cao, Xie and Yang.

【 预 览 】
附件列表
Files Size Format View
RO202310108566375ZK.pdf 2417KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次