期刊论文详细信息
Frontiers in Neurology
Acoustic analysis in stuttering: a machine-learning study
Neurology
Donatella Tomaiuoli1  Francesca Del Gado1  Elena Michetti1  Pietro Di Leo2  Giovanni Saggio2  Giovanni Costantini2  Martina Patera3  Antonio Suppa4  Francesco Asci4  Luca Marsili5  Lucia Longo6  Giovanni Ruoppolo7 
[1]CRC – Centro Ricerca e Cura, Rome, Italy
[2]Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
[3]Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
[4]Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
[5]IRCCS Neuromed Institute, Pozzilli, Italy
[6]Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
[7]Department of Sense Organs, Otorhinolaryngology Section, Sapienza University of Rome, Rome, Italy
[8]IRCCS San Raffaele Pisana, Rome, Italy
关键词: stuttering;    machine-learning;    telemedicine;    home environment;    acoustic analysis;   
DOI  :  10.3389/fneur.2023.1169707
 received in 2023-02-21, accepted in 2023-06-16,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】
BackgroundStuttering is a childhood-onset neurodevelopmental disorder affecting speech fluency. The diagnosis and clinical management of stuttering is currently based on perceptual examination and clinical scales. Standardized techniques for acoustic analysis have prompted promising results for the objective assessment of dysfluency in people with stuttering (PWS).ObjectiveWe assessed objectively and automatically voice in stuttering, through artificial intelligence (i.e., the support vector machine – SVM classifier). We also investigated the age-related changes affecting voice in stutterers, and verified the relevance of specific speech tasks for the objective and automatic assessment of stuttering.MethodsFifty-three PWS (20 children, 33 younger adults) and 71 age−/gender-matched controls (31 children, 40 younger adults) were recruited. Clinical data were assessed through clinical scales. The voluntary and sustained emission of a vowel and two sentences were recorded through smartphones. Audio samples were analyzed using a dedicated machine-learning algorithm, the SVM to compare PWS and controls, both children and younger adults. The receiver operating characteristic (ROC) curves were calculated for a description of the accuracy, for all comparisons. The likelihood ratio (LR), was calculated for each PWS during all speech tasks, for clinical-instrumental correlations, by using an artificial neural network (ANN).ResultsAcoustic analysis based on machine-learning algorithm objectively and automatically discriminated between the overall cohort of PWS and controls with high accuracy (88%). Also, physiologic ageing crucially influenced stuttering as demonstrated by the high accuracy (92%) of machine-learning analysis when classifying children and younger adults PWS. The diagnostic accuracies achieved by machine-learning analysis were comparable for each speech task. The significant clinical-instrumental correlations between LRs and clinical scales supported the biological plausibility of our findings.ConclusionAcoustic analysis based on artificial intelligence (SVM) represents a reliable tool for the objective and automatic recognition of stuttering and its relationship with physiologic ageing. The accuracy of the automatic classification is high and independent of the speech task. Machine-learning analysis would help clinicians in the objective diagnosis and clinical management of stuttering. The digital collection of audio samples here achieved through smartphones would promote the future application of the technique in a telemedicine context (home environment).
【 授权许可】

Unknown   
Copyright © 2023 Asci, Marsili, Suppa, Saggio, Michetti, Di Leo, Patera, Longo, Ruoppolo, Del Gado, Tomaiuoli and Costantini.

【 预 览 】
附件列表
Files Size Format View
RO202310108176096ZK.pdf 1706KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次