期刊论文详细信息
Frontiers in Neuroscience
An improved model using convolutional sliding window-attention network for motor imagery EEG classification
Neuroscience
Jianxu Zheng1  Hua Feng1  Shiqi Cao2  Zijian Wang3  Xuhang Li3  Yuxuan Huang3  Binxing Xu3  Yu Liu3 
[1] Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China;Department of Orthopaedics of TCM Clinical Unit, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China;School of Computer Science and Technology, Donghua University, Shanghai, China;
关键词: EEG;    motor imagery;    brain computer interface;    deep learning;    CNN;    attention;   
DOI  :  10.3389/fnins.2023.1204385
 received in 2023-04-12, accepted in 2023-07-26,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

IntroductionThe classification model of motor imagery-based electroencephalogram (MI-EEG) is a new human-computer interface pattern and a new neural rehabilitation assessment method for diseases such as Parkinson's and stroke. However, existing MI-EEG models often suffer from insufficient richness of spatiotemporal feature extraction, learning ability, and dynamic selection ability.MethodsTo solve these problems, this work proposed a convolutional sliding window-attention network (CSANet) model composed of novel spatiotemporal convolution, sliding window, and two-stage attention blocks.ResultsThe model outperformed existing state-of-the-art (SOTA) models in within- and between-individual classification tasks on commonly used MI-EEG datasets BCI-2a and Physionet MI-EEG, with classification accuracies improved by 4.22 and 2.02%, respectively.DiscussionThe experimental results also demonstrated that the proposed type token, sliding window, and local and global multi-head self-attention mechanisms can significantly improve the model's ability to construct, learn, and adaptively select multi-scale spatiotemporal features in MI-EEG signals, and accurately identify electroencephalogram signals in the unilateral motor area. This work provided a novel and accurate classification model for MI-EEG brain-computer interface tasks and proposed a feasible neural rehabilitation assessment scheme based on the model, which could promote the further development and application of MI-EEG methods in neural rehabilitation.

【 授权许可】

Unknown   
Copyright © 2023 Huang, Zheng, Xu, Li, Liu, Wang, Feng and Cao.

【 预 览 】
附件列表
Files Size Format View
RO202310107013089ZK.pdf 2854KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:0次