期刊论文详细信息
Frontiers in Molecular Biosciences
Ligand-based pharmacophore modeling and QSAR approach to identify potential dengue protease inhibitors
Molecular Biosciences
Amutha Ramaswamy1  Mahesh Samantaray1  Swati Krishna2  Prithvi S. Prabhu2  Anushka A. Poola2  T. P. Krishna Murthy2  Manikanta Murahari3 
[1] Department of Bioinformatics, Pondicherry University, Pondicherry, India;Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, Karnataka, India;Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India;
关键词: Dengue;    QSAR;    pharmacophore modeling;    docking;    molecular dynamics;   
DOI  :  10.3389/fmolb.2023.1106128
 received in 2022-11-26, accepted in 2023-02-07,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

The viral disease dengue is transmitted by the Aedes mosquito and is commonly seen to occur in the tropical and subtropical regions of the world. It is a growing public health concern. To date, other than supportive treatments, there are no specific antiviral treatments to combat the infection. Therefore, finding potential compounds that have antiviral activity against the dengue virus is essential. The NS2B-NS3 dengue protease plays a vital role in the replication and viral assembly. If the functioning of this protease were to be obstructed then viral replication would be halted. As a result, this NS2B-NS3 proves to be a promising target in the process of anti-viral drug design. Through this study, we aim to provide suggestions for compounds that may serve as potent inhibitors of the dengue NS2B-NS3 protein. Here, a ligand-based pharmacophore model was generated and the ZINC database was screened through ZINCPharmer to identify molecules with similar features. 2D QSAR model was developed and validated using reported 4-Benzyloxy Phenyl Glycine derivatives and was utilized to predict the IC50 values of unknown compounds. Further, the study is extended to molecular docking to investigate interactions at the active pocket of the target protein. ZINC36596404 and ZINC22973642 showed a predicted pIC50 of 6.477 and 7.872, respectively. They also showed excellent binding with NS3 protease as is evident from their binding energy of −8.3and −8.1 kcal/mol, respectively. ADMET predictionsofcompounds have shown high drug-likeness. Finally, the molecular dynamic simulations integrated with MM-PBSA binding energy calculations confirmedboth identified ZINC compounds as potential hit moleculeswith good stability.

【 授权许可】

Unknown   
Copyright © 2023 Poola, Prabhu, Murthy, Murahari, Krishna, Samantaray and Ramaswamy.

【 预 览 】
附件列表
Files Size Format View
RO202310106572935ZK.pdf 2176KB PDF download
FMOLB_fmolb-2023-1106128_wc_tfx1.tif 46KB Image download
FPHAR_fphar-2023-1202128_wc_tfx2.tif 32KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx3.tif 56KB Image download
FPHAR_fphar-2023-1202128_wc_tfx5.tif 31KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx5.tif 42KB Image download
FEART_feart-2023-1169258_wc_tfx18.tif 77KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx7.tif 37KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx8.tif 40KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx9.tif 45KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx10.tif 35KB Image download
FEART_feart-2023-1057982_wc_tfx1.tif 377KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx12.tif 39KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx13.tif 37KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx14.tif 37KB Image download
FMOLB_fmolb-2023-1106128_wc_tfx15.tif 34KB Image download
FPHAR_fphar-2023-1146668_wc_tfx2.tif 368KB Image download
【 图 表 】

FPHAR_fphar-2023-1146668_wc_tfx2.tif

FMOLB_fmolb-2023-1106128_wc_tfx15.tif

FMOLB_fmolb-2023-1106128_wc_tfx14.tif

FMOLB_fmolb-2023-1106128_wc_tfx13.tif

FMOLB_fmolb-2023-1106128_wc_tfx12.tif

FEART_feart-2023-1057982_wc_tfx1.tif

FMOLB_fmolb-2023-1106128_wc_tfx10.tif

FMOLB_fmolb-2023-1106128_wc_tfx9.tif

FMOLB_fmolb-2023-1106128_wc_tfx8.tif

FMOLB_fmolb-2023-1106128_wc_tfx7.tif

FEART_feart-2023-1169258_wc_tfx18.tif

FMOLB_fmolb-2023-1106128_wc_tfx5.tif

FPHAR_fphar-2023-1202128_wc_tfx5.tif

FMOLB_fmolb-2023-1106128_wc_tfx3.tif

FPHAR_fphar-2023-1202128_wc_tfx2.tif

FMOLB_fmolb-2023-1106128_wc_tfx1.tif

  文献评价指标  
  下载次数:152次 浏览次数:0次