期刊论文详细信息
Frontiers in Neuroinformatics
CACTUS: a computational framework for generating realistic white matter microstructure substrates
Neuroscience
Remy Gardier1  Juan Luis Villarreal-Haro1  Erick J. Canales-Rodríguez1  Jean-Philippe Thiran2  Elda Fischi-Gomez2  Gabriel Girard3  Jonathan Rafael-Patiño4 
[1] Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland;Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland;CIBM Center for Biomedical Imaging, Lausanne, Switzerland;Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland;Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland;CIBM Center for Biomedical Imaging, Lausanne, Switzerland;Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland;Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada;Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland;Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland;
关键词: microstructure imaging;    diffusion MRI;    brain imaging;    white matter;    Monte-Carlo simulations;    numerical phantom;    synthetic substrates;    high packing density;   
DOI  :  10.3389/fninf.2023.1208073
 received in 2023-04-18, accepted in 2023-07-13,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

Monte-Carlo diffusion simulations are a powerful tool for validating tissue microstructure models by generating synthetic diffusion-weighted magnetic resonance images (DW-MRI) in controlled environments. This is fundamental for understanding the link between micrometre-scale tissue properties and DW-MRI signals measured at the millimetre-scale, optimizing acquisition protocols to target microstructure properties of interest, and exploring the robustness and accuracy of estimation methods. However, accurate simulations require substrates that reflect the main microstructural features of the studied tissue. To address this challenge, we introduce a novel computational workflow, CACTUS (Computational Axonal Configurator for Tailored and Ultradense Substrates), for generating synthetic white matter substrates. Our approach allows constructing substrates with higher packing density than existing methods, up to 95% intra-axonal volume fraction, and larger voxel sizes of up to 500μm3 with rich fibre complexity. CACTUS generates bundles with angular dispersion, bundle crossings, and variations along the fibres of their inner and outer radii and g-ratio. We achieve this by introducing a novel global cost function and a fibre radial growth approach that allows substrates to match predefined targeted characteristics and mirror those reported in histological studies. CACTUS improves the development of complex synthetic substrates, paving the way for future applications in microstructure imaging.

【 授权许可】

Unknown   
Copyright © 2023 Villarreal-Haro, Gardier, Canales-Rodríguez, Fischi-Gomez, Girard, Thiran and Rafael-Patiño.

【 预 览 】
附件列表
Files Size Format View
RO202310106329413ZK.pdf 6397KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:0次