Frontiers in Rehabilitation Sciences | |
Co-activation of the diaphragm and external intercostal muscles through an adaptive closed-loop respiratory pacing controller | |
Rehabilitation Sciences | |
Rabeya Zinnat Adury1  Ranu Jung2  Ricardo Siu3  | |
[1] Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States;Department of Biomedical Engineering, Florida International University, Miami, FL, United States;Department of Biomedical Engineering, Florida International University, Miami, FL, United States;Department of Biomedical Engineering, The Institute for Integrative and Innovative Research (IR), University of Arkansas, Fayetteville, AR, United States;Department of Biomedical Engineering, Florida International University, Miami, FL, United States;Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, United States; | |
关键词: closed-loop system; ventilatory control system; stimulation; respiratory pacing; sighs; augmented breaths; stimulation-induced fatigue; | |
DOI : 10.3389/fresc.2023.1199722 | |
received in 2023-04-03, accepted in 2023-06-20, 发布年份 2023 | |
来源: Frontiers | |
【 摘 要 】
IntroductionRespiratory pacing is a promising alternative to traditional mechanical ventilation that has been shown to significantly increase the survival and quality of life after the neural control of the respiratory system has been compromised. However, current pacing approaches to achieve adequate ventilation tend to target only the diaphragm without pacing external intercostal muscles that are also activated during normal inspiration. Furthermore, the pacing paradigms do not allow for intermittent sighing, which carries an important physiological role. We hypothesized that simultaneous activation of the diaphragm and external intercostal muscles would improve the efficiency of respiratory pacing compared to diaphragm stimulation alone.Materials and MethodsWe expanded an adaptive, closed-loop diaphragm pacing paradigm we had previously developed to include external intercostal muscle activation and sigh generation. We then investigated, using a rodent model for respiratory pacing, if simultaneous activation would delay the fatigability of the diaphragm during pacing and allow induction of appropriate sigh-like behavior in spontaneously breathing un-injured anesthetized rats (n = 8) with pacing electrodes implanted bilaterally in the diaphragm and external intercostal muscles, between 2nd and 3rd intercostal spaces.ResultsWith this novel pacing system, we show that fatigability of the diaphragm was lower when using combined muscle stimulation than diaphragm stimulation alone (p = 0.014) and that combined muscle stimulation was able to induce sighs with significantly higher tidal volumes compared to diaphragm stimulation alone (p = 0.014).ConclusionOur findings demonstrate that simultaneous activation of the inspiratory muscles could be used as a suitable strategy to delay stimulation-induced diaphragmatic fatigue and to induce a sigh-like behavior that could improve respiratory health.
【 授权许可】
Unknown
© 2023 Adury, Siu and Jung.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202310105276624ZK.pdf | 3039KB | download |