Frontiers in Plant Science | |
A novel method for genomic-enabled prediction of cultivars in new environments | |
Plant Science | |
Sofia Ramos-Pulido1  Abelardo Montesinos-López1  Brandon Alejandro Mosqueda González2  Felícitas Alejandra Valladares-Anguiano3  Osval A. Montesinos-López4  Carlos Moisés Hernández-Suárez5  Paolo Vitale6  José Crossa7  | |
[1] Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico;Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), México City, Mexico;Centro de Investigación y Formación del Pensamiento Libre en México, Colima, Mexico;Facultad de Telemática, Universidad de Colima, Colima, Colima, Mexico;Instituto de Innovaciónn y Desarrollo, Universidad Francisco Gavidia, San Salvador, El Salvador;International Maize and Wheat Improvement Center (CIMMYT), El Batan, Edo. de México, Mexico;International Maize and Wheat Improvement Center (CIMMYT), El Batan, Edo. de México, Mexico;Colegio de Postgraduados, Montecillos, Edo. de México, Mexico;Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Perth, WA, Australia; | |
关键词: gains in accuracy; GBLUP; genomic prediction; genotype × environment interaction (GE); novel method; | |
DOI : 10.3389/fpls.2023.1218151 | |
received in 2023-05-06, accepted in 2023-07-03, 发布年份 2023 | |
来源: Frontiers | |
【 摘 要 】
IntroductionGenomic selection (GS) has gained global importance due to its potential to accelerate genetic progress and improve the efficiency of breeding programs.Objectives of the researchIn this research we proposed a method to improve the prediction accuracy of tested lines in new (untested) environments.Method-1The new method trained the model with a modified response variable (a difference of response variables) that decreases the lack of a non-stationary distribution between the training and testing and improved the prediction accuracy.Comparing new and conventional methodWe compared the prediction accuracy of the conventional genomic best linear unbiased prediction (GBLUP) model (M1) including (or not) genotype × environment interaction (GE) (M1_GE; M1_NO_GE) versus the proposed method (M2) on several data sets.Results and discussionThe gain in prediction accuracy of M2, versus M1_GE, M1_NO_GE in terms of Pearson´s correlation was of at least 4.3%, while in terms of percentage of top-yielding lines captured when was selected the 10% (Best10) and 20% (Best20) of lines was at least of 19.5%, while in terms of Normalized Root Mean Squared Error (NRMSE) was of at least of 42.29%.
【 授权许可】
Unknown
Copyright © 2023 Montesinos-López, Ramos-Pulido, Hernández-Suárez, Mosqueda González, Valladares-Anguiano, Vitale, Montesinos-López and Crossa
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202310103266036ZK.pdf | 2675KB | download |