期刊论文详细信息
Frontiers in Oncology
PLX4032 resistance of patient-derived melanoma cells: crucial role of oxidative metabolism
Oncology
Andrea Benzi1  Barbara Marengo2  Stefania Vernazza2  Cinzia Domenicotti2  Ombretta Garbarino2  Giulia Elda Valenti2  Lorenzo Monteleone2  Melania Grottoli2  Gabriella Pietra3  Maria Cristina Mingari3  Silvia Ravera4  Emanuele Farinini5  Riccardo Leardi5  Santina Bruzzone6 
[1] Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy;Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy;Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy;IRCCS Ospedale Policlinico San Martino, Genova, Italy;Department of Experimental Medicine, Human Anatomy Section, University of Genoa, Genoa, Italy;Department of Pharmacy, University of Genoa, Genoa, Italy;IRCCS Ospedale Policlinico San Martino, Genova, Italy;Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy;
关键词: melanoma;    BRAF;    PLX4032;    targeted therapy resistance;    pyruvate dehydrogenase;    glutathione;    oxidative metabolism;   
DOI  :  10.3389/fonc.2023.1210130
 received in 2023-04-21, accepted in 2023-07-03,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

BackgroundMalignant melanoma is the most lethal form of skin cancer which shows BRAF mutation in 50% of patients. In this context, the identification of BRAFV600E mutation led to the development of specific inhibitors like PLX4032. Nevertheless, although its initial success, its clinical efficacy is reduced after six-months of therapy leading to cancer relapse due to the onset of drug resistance. Therefore, investigating the mechanisms underlying PLX4032 resistance is fundamental to improve therapy efficacy. In this context, several models of PLX4032 resistance have been developed, but the discrepancy between in vitro and in vivo results often limits their clinical translation.MethodsThe herein reported model has been realized by treating with PLX4032, for six months, patient-derived BRAF-mutated melanoma cells in order to obtain a reliable model of acquired PLX4032 resistance that could be predictive of patient’s treatment responses. Metabolic analyses were performed by evaluating glucose consumption, ATP synthesis, oxygen consumption rate, P/O ratio, ATP/AMP ratio, lactate release, lactate dehydrogenase activity, NAD+/NADH ratio and pyruvate dehydrogenase activity in parental and drug resistant melanoma cells. The intracellular oxidative state was analyzed in terms of reactive oxygen species production, glutathione levels and NADPH/NADP+ ratio. In addition, a principal component analysis was conducted in order to identify the variables responsible for the acquisition of targeted therapy resistance.ResultsCollectively, our results demonstrate, for the first time in patient-derived melanoma cells, that the rewiring of oxidative phosphorylation and the maintenance of pyruvate dehydrogenase activity and of high glutathione levels contribute to trigger the onset of PLX4032 resistance.ConclusionTherefore, it is possible to hypothesize that inhibitors of glutathione biosynthesis and/or pyruvate dehydrogenase activity could be used in combination with PLX4032 to overcome drug resistance of BRAF-mutated melanoma patients. However, the identification of new adjuvant targets related to drug-induced metabolic reprogramming could be crucial to counteract the failure of targeted therapy in metastatic melanoma.

【 授权许可】

Unknown   
Copyright © 2023 Garbarino, Valenti, Monteleone, Pietra, Mingari, Benzi, Bruzzone, Ravera, Leardi, Farinini, Vernazza, Grottoli, Marengo and Domenicotti

【 预 览 】
附件列表
Files Size Format View
RO202310102481825ZK.pdf 6245KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次