期刊论文详细信息
Frontiers in Plant Science
Genome-wide analysis revealed the stepwise origin and functional diversification of HSDs from lower to higher plant species
Plant Science
Amr Elkelish1  Meng Zhang2  Noor Saleem2  Usman Aziz2  Xiangling Liu2  Muhammad Ali3  Khairiah Mubarak Alwutayd4  Rana M. Alshegaihi5  Gniewko Niedbała6 
[1] Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia;Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt;College of Agronomy, Northwest A & F University, Yangling, China;College of Horticulture, Northwest A & F University, Yangling, China;Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia;Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia;Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poznań, Poland;
关键词: HSDs;    oil body;    seed development;    steroleosins;    NADP(H);    SDR;   
DOI  :  10.3389/fpls.2023.1159394
 received in 2023-02-05, accepted in 2023-03-14,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

Hydroxysteroid dehydrogenase (HSDs) is an oil-body sterol protein (steroleosin) with an NADP(H) binding domain that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. There are numerous studies on the characterization of HSDs in plants. However, thus far, the evolutionary differentiation and divergence analysis of these genes remain to be explored. The current study used an integrated method to elucidate the sequential evolution of HSDs in 64 sequenced plant genomes. Analyses were conducted on their origins, distribution, duplication, evolutionary paths, domain functions, motif composition, properties, and cis-elements. Results indicate that except for algae, HSD1 was widely distributed in plant species ranging from lower to higher plants, while HSD5 was restricted to terrestrial plants, and HSD2 was identified in fewer monocots and several dicot plants. Phylogenetic analysis of HSD proteins revealed that monocotyledonous HSD1 in moss and ferns appeared closest to the outgroup, V. carteri HSD-like, M. musculus HSD1, and H. sapiens HSD1. These data support the hypothesis that HSD1 originated in bryophytes and then in non-vascular and vascular plants, followed by HSD5 only in land plants. Gene structure analysis suggests that HSDs in plant species came up with a fixed number of six exons, and the intron phase was primarily 0, 1, 0, 0, and 0. Similarly, duplication analysis revealed that segmental duplications were the main reason for HSDs in plant species. Physicochemical properties suggest that dicotyledonous HSD1s and HSD5s were mainly acidic. The monocotyledonous HSD1s and HSD2s and the dicotyledonous HSD2s, HSD3s, HSD4s, and HSD6s were mainly basic, implying that HSDs in plants may have a variety of functions. Cis-regulatory elements and expression analysis revealed that HSDs in plants might have roles in several abiotic stresses. Due to the high expression of HSD1s and HSD5s in seeds, these HSDs in plants may have roles in fatty acid accumulation and degradation.

【 授权许可】

Unknown   
Copyright © 2023 Saleem, Aziz, Ali, Liu, Alwutayd, Alshegaihi, Niedbała, Elkelish and Zhang

【 预 览 】
附件列表
Files Size Format View
RO202310102394451ZK.pdf 4726KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次