| Frontiers in Plant Science | |
| Variation in nitrogen partitioning and reproductive stage nitrogen remobilization determines nitrogen grain production efficiency (NUEg) in diverse rice genotypes under varying nitrogen supply | |
| Plant Science | |
| Santosh Kumar1  Birendra K. Padhan2  Lekshmy Sathee2  Viswanathan Chinnusamy2  Arvind Kumar3  | |
| [1] Division of Crop Research, Indian Council of Agricultural Research (ICAR) Research Complex for Eastern Region, Patna, Bihar, India;Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India;International Rice Research Institute (IRRI) South Asia Regional Centre (ISARC), Varanasi, Uttar Pradesh, India;International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India; | |
| 关键词: Nitrogen remobilization efficiency (NRE); Nitrogen Harvest Index (NHI); Nitrogen grain production efficiency (NUEg); Nitrogen use efficiency; Rice, NUE, Nitrogen deficiency; Optimum Nitrogen; | |
| DOI : 10.3389/fpls.2023.1093581 | |
| received in 2022-11-09, accepted in 2023-01-31, 发布年份 2023 | |
| 来源: Frontiers | |
PDF
|
|
【 摘 要 】
Nitrogen (N) is an important macronutrient needed for grain yield, grain N and grain protein content in rice. Grain yield and quality are significantly determined by N availability. In this study, to understand the mechanisms associated with reproductive stage N remobilization and N partitioning to grain 2 years of field experiments were conducted with 30 diverse rice genotypes during 2019-Kharif and 2020-Kharif seasons. The experiments were conducted with two different N treatments; N deficient (N0-no external N application, available soil N; 2019-234.15 kgha-1, 2020-225.79 kgha-1) and N sufficient (N120-120 kgha-1 external N application, available soil N; 2019-363.77 kgha-1, 2020-367.95 kgha-1). N application increased the NDVI value, biomass accumulation, grain yield, harvest index and grain N accumulation. Post-anthesis N uptake and N remobilization from vegetative tissues to grain are critical for grain yield and N harvest index. Rice genotypes, Kalinga-1, BAM-4234, IR-8384-B-B102-3, Sahbhagi Dhan, BVD-109 and Nerica-L-42 showed a higher rate of N remobilization under N sufficient conditions. But, under N deficiency, rice genotypes-83929-B-B-291-3-1-1, BVD-109, IR-8384-B-B102-3 and BAM-4234 performed well showing higher N remobilization efficiency. The total amount of N remobilization was recorded to be high in the N120 treatment. The harvest index was higher in N120 during both the cropping seasons. RANBIR BASMATI, BAM-832, APO, BAM-247, IR-64, Vandana, and Nerica-L-44 were more efficient in N grain production efficiency under N deficient conditions. From this study, it is evident that higher grain N accumulation is not always associated with higher yield. IR-83929-B-B-291-3-1-1, Kalinga-1, APO, Pusa Basmati-1, and Nerica-L-44 performed well for different N use efficiency component traits under both N deficient (N0) and N sufficient (N120) conditions. Identifying genotypes/donors for N use efficiency-component traits is crucial in improving the fertilizer N recovery rate and site specific N management.
【 授权许可】
Unknown
Copyright © 2023 Padhan, Sathee, Kumar, Chinnusamy and Kumar
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202310101926617ZK.pdf | 3805KB |
PDF