期刊论文详细信息
Frontiers in Microbiology
The balance between fitness advantages and costs drives adaptation of bacteriophage Qβ to changes in host density at different temperatures
Microbiology
Elena Llorente1  Mara Laguna-Castro1  Alicia Rodríguez-Moreno1  Ester Lázaro2 
[1] Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain;null;
关键词: bacteriophage Qβ;    host density;    experimental evolution;    fitness cost;    adaptation;    molecular evolution;    temperature;   
DOI  :  10.3389/fmicb.2023.1197085
 received in 2023-03-30, accepted in 2023-05-12,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

IntroductionHost density is one of the main factors affecting the infective capacity of viruses. When host density is low, it is more difficult for the virus to find a susceptible cell, which increases its probability of being damaged by the physicochemical agents of the environment. Nevertheless, viruses can adapt to variations in host density through different strategies that depend on the particular characteristics of the life cycle of each virus. In a previous work, using the bacteriophage Qβ as an experimental model, we found that when bacterial density was lower than optimal the virus increased its capacity to penetrate into the bacteria through a mutation in the minor capsid protein (A1) that is not described to interact with the cell receptor.ResultsHere we show that the adaptive pathway followed by Qβ in the face of similar variations in host density depends on environmental temperature. When the value for this parameter is lower than optimal (30°C), the mutation selected is the same as at the optimal temperature (37°C). However, when temperature increases to 43°C, the mutation selected is located in a different protein (A2), which is involved both in the interaction with the cell receptor and in the process of viral progeny release. The new mutation increases the entry of the phage into the bacteria at the three temperatures assayed. However, it also considerably increases the latent period at 30 and 37°C, which is probably the reason why it is not selected at these temperatures.ConclusionThe conclusion is that the adaptive strategies followed by bacteriophage Qβ, and probably other viruses, in the face of variations in host density depend not only on their advantages at this selective pressure, but also on the fitness costs that particular mutations may present in function of the rest of environmental parameters that influence viral replication and stability.

【 授权许可】

Unknown   
Copyright © 2023 Laguna-Castro, Rodríguez-Moreno, Llorente and Lázaro.

【 预 览 】
附件列表
Files Size Format View
RO202310101692044ZK.pdf 4123KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次