| Frontiers in Microbiology | |
| Integrated enzymes activity and transcriptome reveal the effect of exogenous melatonin on the strain degeneration of Cordyceps militaris | |
| Microbiology | |
| Wenli Fan1  Zhichao Zu1  Siqi Wang1  Tianlai Li1  Yingming Zhao2  | |
| [1] Key Laboratory of Ministry of Education for Facility Horticulture, Shenyang, China;Key Laboratory of Protected Horticulture, National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China;Liaoning Key Laboratory of Functional Cordyceps militaris, Shenyang, China;College of Horticulture, Shenyang Agricultural University, Shenyang, China;Liaoning Academy of Agricultural Sciences, Shenyang, China; | |
| 关键词: melatonin; Cordyceps militaris; strain degeneration; antioxidant system; cordycepin; | |
| DOI : 10.3389/fmicb.2023.1112035 | |
| received in 2022-11-30, accepted in 2023-03-15, 发布年份 2023 | |
| 来源: Frontiers | |
PDF
|
|
【 摘 要 】
As a valuable medicinal and edible fungus, Cordyceps militaris has been industrialized with broad development prospects. It contains a lot of bioactive compounds that are beneficial to our health. However, during artificial cultivation, strain degeneration is a challenge that inhibits the industrialization utility of C. militaris. Exogenous melatonin (MT) can scavenge for reactive oxygen species (ROS) in fungus and can alleviate strain degeneration. To establish the significance and molecular mechanisms of MT on strain degeneration, we investigated the third-generation strain (W5-3) of C. militaris via morphological, biochemical, and transcriptomic approaches under MT treatment. Morphological analyses revealed that colony angulation of C. militaris was significantly weakened, and the aerial hypha was reduced by 60 μmol L–1 MT treatment. Biochemical analyses showed low levels of ROS and malondialdehyde (MDA), as well as increasing endogenous MT levels as exogenous MT increased. RNA-Seq revealed that compared with the control, several antioxidant enzyme-related genes were up-regulated under 60 μmol L–1 MT treatment. Among them, glutathione s-transferase genes were up-regulated by a factor of 11.04. In addition, genes that are potentially involved in cordycepin, adenosine and active compound biosynthesis for the growth and development of mycelium were up-regulated. Collectively, these findings provide the basis for further elucidation of the molecular mechanisms involved in C. militaris strain degeneration.
【 授权许可】
Unknown
Copyright © 2023 Zu, Wang, Zhao, Fan and Li.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202310101443020ZK.pdf | 3775KB |
PDF