Frontiers in Materials | |
Machine learning-based evaluation of parameters of high-strength concrete and raw material interaction at elevated temperatures | |
Materials | |
Marc Azab1  Alireza Bahrami2  Salman Ali Suhail3  Gongmei Chen4  Muhammad Sufian5  | |
[1] College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait;Department of Building Engineering, Energy Systems and Sustainability Science, Faculty of Engineering and Sustainable Development, University of Gävle, Gävle, Sweden;Department of Civil Engineering, University of Lahore (UOL), Lahore, Pakistan;School of Architecture and Civil Engineering, Changchun Sci-Tech University, Changchun, China;School of Civil Engineering, Southeast University, Nanjing, China; | |
关键词: compressive strength; high-strength concrete; machine learning; raw material interaction; fire resistance; | |
DOI : 10.3389/fmats.2023.1187094 | |
received in 2023-03-15, accepted in 2023-03-27, 发布年份 2023 | |
来源: Frontiers | |
【 摘 要 】
High-strength concrete (HSC) is vulnerable to strength loss when exposed to high temperatures or fire, risking the structural integrity of buildings and critical infrastructures. Predicting the compressive strength of HSC under high-temperature conditions is crucial for safety. Machine learning (ML) techniques have emerged as a powerful tool for predicting concrete properties. Accurate prediction of the compressive strength of HSC is important as HSC can experience strength losses of up to 80% after exposure to temperatures of 800°C–1000°C. This study evaluates the efficacy of ML techniques such as Extreme Gradient Boosting, Random Forest (RF), and Adaptive Boosting for predicting the compressive strength of HSC. The results of this study demonstrate that the RF model is the most efficient for predicting the compressive strength of HSC, exhibiting the R2 value of 0.98 and lower mean absolute error and root mean square error values than the other applied models. Furthermore, Shapley Additive Explanations analysis highlights temperature as the most significant factor influencing the compressive strength of HSC. This article provides valuable insights into the timely and effective determination of the compressive strength of HSC under high-temperature conditions, benefiting both the construction industry and academia. By leveraging ML techniques and considering the critical factors that influence the compressive strength of HSC, it is possible to optimize the design and construction process of HSC and enhance its resilience to high-temperature exposure.
【 授权许可】
Unknown
Copyright © 2023 Chen, Suhail, Bahrami, Sufian and Azab.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202310101187884ZK.pdf | 5043KB | download |