Cell & Bioscience | |
l-Arginine, as an essential amino acid, is a potential substitute for treating COPD via regulation of ROS/NLRP3/NF-κB signaling pathway | |
Research | |
Kexi Liao1  Jing Wang2  Liangming Liu3  Tao Li3  Chunhua Ma4  | |
[1] Institute of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Shapingba District, Gaotanyan Road 30, 400038, Chongqing, China;School of Biology and Food Engineering, Institute of Pharmaceutical Biotechnology, Suzhou University, Anhui, China;State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Tranfusion Research, Department of Army Medical Center, Army Medical University, 400042, Chongqing, People’s Republic of China;State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Tranfusion Research, Department of Army Medical Center, Army Medical University, 400042, Chongqing, People’s Republic of China;The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, 210001, Nanjing, China; | |
关键词: Metabolic markers; COPD; -Arginine; | |
DOI : 10.1186/s13578-023-00994-9 | |
received in 2022-04-05, accepted in 2023-02-20, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
BackgroundsChronic obstructive pulmonary disease (COPD) is a frequent and common disease in clinical respiratory medicine and its mechanism is unclear. The purpose of this study was to find the new biomarkers of COPD and elucidate its role in the pathogenesis of COPD. Analysis of metabolites in plasma of COPD patients were performed by ultra-high performance liquid chromatography (UPLC) and quadrupole time-of-flight mass spectrometry (TOF–MS). The differential metabolites were analyzed and identified by multivariate analysis between COPD patients and healthy people. The role and mechanisms of the differential biomarkers in COPD were verified with COPD rats, arginosuccinate synthetase 1 (ASS-l) KO mice and bronchial epithelial cells (BECs). Meanwhile, whether the differential biomarkers can be the potential treatment targets for COPD was also investigated. 85 differentials metabolites were identified between COPD patients and healthy people by metabonomic.Resultsl-Arginine (LA) was the most obvious differential metabolite among the 85 metabolites. Compare with healthy people, the level of LA was markedly decreased in serum of COPD patients. It was found that LA had protective effects on COPD with in vivo and in vitro experiments. Silencing Ass-1, which regulates LA metabolism, and α-methy-dl-aspartic (NHLA), an Ass-1 inhibitor, canceled the protective effect of LA on COPD. The mechanism of LA in COPD was related to the inhibition of ROS/NLRP3/NF-κB signaling pathway. It was also found that exogenous LA significantly improved COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. l-Arginine (LA) as a key metabolic marker is identified in COPD patients and has a protective effect on COPD via regulation of ROS/NLRP3/NF-κB signaling pathway.ConclusionLA may be a novel target for the treatment of COPD and also a potential substitute for treating COPD.
【 授权许可】
CC BY
© Society of Chinese Bioscientists in America (SCBA) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202309158561045ZK.pdf | 12204KB | download | |
12862_2023_2133_Article_IEq130.gif | 1KB | Image | download |
Fig. 2 | 255KB | Image | download |
MediaObjects/12888_2023_5047_MOESM1_ESM.docx | 26KB | Other | download |
MediaObjects/12888_2023_5047_MOESM7_ESM.docx | 19KB | Other | download |
Fig. 4 | 726KB | Image | download |
Fig. 7 | 451KB | Image | download |
Fig. 2 | 462KB | Image | download |
955KB | Image | download | |
Fig. 2 | 139KB | Image | download |
MediaObjects/12888_2023_5016_MOESM2_ESM.docx | 14KB | Other | download |
MediaObjects/41408_2023_899_MOESM1_ESM.docx | 3828KB | Other | download |
MediaObjects/13690_2023_1164_MOESM1_ESM.pdf | 147KB | download | |
40517_2023_266_Article_IEq28.gif | 1KB | Image | download |
MediaObjects/13690_2023_1153_MOESM3_ESM.pdf | 229KB | download | |
40517_2023_266_Article_IEq31.gif | 1KB | Image | download |
【 图 表 】
40517_2023_266_Article_IEq31.gif
40517_2023_266_Article_IEq28.gif
Fig. 2
Fig. 2
Fig. 7
Fig. 4
Fig. 2
12862_2023_2133_Article_IEq130.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]