期刊论文详细信息
Chinese Journal of Mechanical Engineering
A Footpad Structure with Reusable Energy Absorption Capability for Deep Space Exploration Lander: Design and Analysis
Original Article
Zhiwei Xiong1  Xiaohang Qiu2  Yanzhao Guo3  Weiyuan Dou3  Lele Zhang3 
[1]China Academy of Space Technology, 100094, Beijing, China
[2]School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 100044, Beijing, China
[3]School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 100044, Beijing, China
[4]National International Science and Technology Cooperation Base on Railway Vehicle Operation Engineering, Beijing Jiaotong University, 100044, Beijing, China
关键词: Deep space exploration lander;    Footpad;    Shape memory alloy (SMA);    Reusable energy absorption structure;    Design method;   
DOI  :  10.1186/s10033-023-00918-1
 received in 2023-02-20, accepted in 2023-07-20,  发布年份 2023
来源: Springer
PDF
【 摘 要 】
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground, and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process. The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation. Nevertheless, its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed, rendering it unusable for reusable landers in the future. This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys (SMA). The topological configuration of the energy absorbing structure is derived using an equivalent static load method (ESL), and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed. To verify the accuracy of the numerical modelling, a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results. Moreover, the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations. The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain, resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
【 授权许可】

CC BY   
© Chinese Mechanical Engineering Society 2023

【 预 览 】
附件列表
Files Size Format View
RO202309156477361ZK.pdf 4404KB PDF download
MediaObjects/40560_2023_684_MOESM2_ESM.docx 35KB Other download
40517_2023_261_Article_IEq17.gif 1KB Image download
40517_2023_261_Article_IEq35.gif 1KB Image download
Fig. 3 64KB Image download
Fig. 2 180KB Image download
Fig. 1 116KB Image download
12888_2023_5113_Article_IEq5.gif 1KB Image download
Fig. 1 1889KB Image download
Fig. 4 2386KB Image download
Fig. 1 691KB Image download
Fig. 1 159KB Image download
Fig. 3 346KB Image download
Fig. 2 99KB Image download
Fig. 2 736KB Image download
MediaObjects/13046_2023_2784_MOESM3_ESM.pdf 489KB PDF download
Fig. 1 180KB Image download
Fig. 3 136KB Image download
Fig. 6 296KB Image download
Fig. 1 234KB Image download
41522_2023_426_Article_IEq8.gif 1KB Image download
12862_2023_2133_Article_IEq56.gif 1KB Image download
Fig. 2 813KB Image download
Fig. 2 198KB Image download
Fig. 1 80KB Image download
Fig. 1 416KB Image download
Fig. 1 133KB Image download
Fig. 2 1050KB Image download
Fig. 2 544KB Image download
Fig. 1 761KB Image download
Fig. 2 40KB Image download
Fig. 6 478KB Image download
12862_2023_2133_Article_IEq80.gif 1KB Image download
Fig. 5 2407KB Image download
Fig. 4 190KB Image download
Fig. 2 386KB Image download
Fig. 5 998KB Image download
Fig. 7 2606KB Image download
MediaObjects/41408_2023_892_MOESM7_ESM.xlsx 13KB Other download
MediaObjects/12974_2023_2855_MOESM6_ESM.tif 36752KB Other download
Fig. 3 404KB Image download
Fig. 2 73KB Image download
Fig. 2 868KB Image download
13690_2023_1147_Article_IEq6.gif 1KB Image download
13690_2023_1147_Article_IEq7.gif 1KB Image download
13690_2023_1147_Article_IEq8.gif 1KB Image download
13690_2023_1147_Article_IEq9.gif 1KB Image download
13690_2023_1147_Article_IEq10.gif 1KB Image download
13690_2023_1147_Article_IEq11.gif 1KB Image download
Fig. 1 718KB Image download
Fig. 2 53KB Image download
Fig. 1 2029KB Image download
Fig. 4 263KB Image download
Fig. 2 255KB Image download
Fig. 6 2060KB Image download
【 图 表 】

Fig. 6

Fig. 2

Fig. 4

Fig. 1

Fig. 2

Fig. 1

13690_2023_1147_Article_IEq11.gif

13690_2023_1147_Article_IEq10.gif

13690_2023_1147_Article_IEq9.gif

13690_2023_1147_Article_IEq8.gif

13690_2023_1147_Article_IEq7.gif

13690_2023_1147_Article_IEq6.gif

Fig. 2

Fig. 2

Fig. 3

Fig. 7

Fig. 5

Fig. 2

Fig. 4

Fig. 5

12862_2023_2133_Article_IEq80.gif

Fig. 6

Fig. 2

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 2

Fig. 2

12862_2023_2133_Article_IEq56.gif

41522_2023_426_Article_IEq8.gif

Fig. 1

Fig. 6

Fig. 3

Fig. 1

Fig. 2

Fig. 2

Fig. 3

Fig. 1

Fig. 1

Fig. 4

Fig. 1

12888_2023_5113_Article_IEq5.gif

Fig. 1

Fig. 2

Fig. 3

40517_2023_261_Article_IEq35.gif

40517_2023_261_Article_IEq17.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  文献评价指标  
  下载次数:1次 浏览次数:10次