期刊论文详细信息
Radiation Oncology
Deep learning based automatic segmentation of organs-at-risk for 0.35 T MRgRT of lung tumors
Research
Marco Riboldi1  Maria Kawula2  Moritz Rabe2  Sebastian Marschner2  Guillaume Landry2  Christopher Kurz2  Stefanie Corradini2  Marvin F. Ribeiro2  Claus Belka3 
[1] Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany;Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany;Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany;German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany;Bavarian Cancer Research Center (BZKF), Munich, Germany;
关键词: Deep learning;    Auto-segmentation;    MR-Linac;    MRI-guidance;    Thorax;   
DOI  :  10.1186/s13014-023-02330-4
 received in 2023-04-21, accepted in 2023-08-03,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Background and purposeMagnetic resonance imaging guided radiotherapy (MRgRT) offers treatment plan adaptation to the anatomy of the day. In the current MRgRT workflow, this requires the time consuming and repetitive task of manual delineation of organs-at-risk (OARs), which is also prone to inter- and intra-observer variability. Therefore, deep learning autosegmentation (DLAS) is becoming increasingly attractive. No investigation of its application to OARs in thoracic magnetic resonance images (MRIs) from MRgRT has been done so far. This study aimed to fill this gap.Materials and methods122 planning MRIs from patients treated at a 0.35 T MR-Linac were retrospectively collected. Using an 80/19/23 (training/validation/test) split, individual 3D U-Nets for segmentation of the left lung, right lung, heart, aorta, spinal canal and esophagus were trained. These were compared to the clinically used contours based on Dice similarity coefficient (DSC) and Hausdorff distance (HD). They were also graded on their clinical usability by a radiation oncologist.ResultsMedian DSC was 0.96, 0.96, 0.94, 0.90, 0.88 and 0.78 for left lung, right lung, heart, aorta, spinal canal and esophagus, respectively. Median 95th percentile values of the HD were 3.9, 5.3, 5.8, 3.0, 2.6 and 3.5 mm, respectively. The physician preferred the network generated contours over the clinical contours, deeming 85 out of 129 to not require any correction, 25 immediately usable for treatment planning, 15 requiring minor and 4 requiring major corrections.ConclusionsWe trained 3D U-Nets on clinical MRI planning data which produced accurate delineations in the thoracic region. DLAS contours were preferred over the clinical contours.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202309154983426ZK.pdf 1704KB PDF download
Fig. 1 313KB Image download
Table 1 164KB Table download
Fig. 2 102KB Image download
40517_2023_266_Article_IEq10.gif 1KB Image download
12888_2023_5115_Article_IEq2.gif 1KB Image download
Fig. 2 697KB Image download
40517_2023_266_Article_IEq18.gif 1KB Image download
40517_2023_266_Article_IEq19.gif 1KB Image download
40517_2023_266_Article_IEq48.gif 1KB Image download
40517_2023_266_Article_IEq49.gif 1KB Image download
40517_2023_266_Article_IEq50.gif 1KB Image download
MediaObjects/12888_2023_5016_MOESM4_ESM.docx 81KB Other download
40517_2023_266_Article_IEq52.gif 1KB Image download
MediaObjects/41408_2023_899_MOESM2_ESM.pdf 1957KB PDF download
40517_2023_266_Article_IEq54.gif 1KB Image download
40517_2023_266_Article_IEq55.gif 1KB Image download
40517_2023_266_Article_IEq56.gif 1KB Image download
40517_2023_266_Article_IEq57.gif 1KB Image download
40517_2023_266_Article_IEq58.gif 1KB Image download
40517_2023_266_Article_IEq59.gif 1KB Image download
MediaObjects/12974_2023_2855_MOESM4_ESM.tif 38394KB Other download
40517_2023_266_Article_IEq60.gif 1KB Image download
40517_2023_266_Article_IEq61.gif 1KB Image download
40517_2023_266_Article_IEq62.gif 1KB Image download
40517_2023_266_Article_IEq64.gif 1KB Image download
Fig. 1 267KB Image download
40517_2023_266_Article_IEq66.gif 1KB Image download
40517_2023_266_Article_IEq67.gif 1KB Image download
40517_2023_266_Article_IEq68.gif 1KB Image download
Fig. 2 187KB Image download
40517_2023_266_Article_IEq1.gif 1KB Image download
Fig. 1 273KB Image download
MediaObjects/12888_2023_5015_MOESM1_ESM.xlsx 119KB Other download
40517_2023_266_Article_IEq4.gif 1KB Image download
Fig. 1 336KB Image download
40517_2023_266_Article_IEq6.gif 1KB Image download
Fig. 1 1086KB Image download
Fig. 5 1206KB Image download
MediaObjects/12947_2023_311_MOESM4_ESM.docx 81KB Other download
40854_2023_507_Article_IEq17.gif 1KB Image download
MediaObjects/12951_2023_1985_MOESM3_ESM.pdf 1543KB PDF download
Fig. 2 1138KB Image download
Fig. 2 227KB Image download
Fig. 1 99KB Image download
MediaObjects/42004_2023_979_MOESM3_ESM.pdf 20727KB PDF download
Fig. 6 737KB Image download
Fig. 1 592KB Image download
Fig. 2 226KB Image download
40854_2023_507_Article_IEq23.gif 1KB Image download
Fig. 1 180KB Image download
Fig. 2 413KB Image download
Fig. 10 4137KB Image download
MediaObjects/12888_2023_5025_MOESM1_ESM.doc 70KB Other download
13690_2023_1151_Article_IEq1.gif 1KB Image download
Fig. 1 1190KB Image download
910KB Image download
40854_2023_507_Article_IEq31.gif 1KB Image download
Scheme 1 960KB Image download
Fig. 1 75KB Image download
Fig. 1 244KB Image download
Fig. 3 544KB Image download
Fig. 1 543KB Image download
Fig. 2 79KB Image download
Fig. 1 1388KB Image download
Fig. 3 2769KB Image download
MediaObjects/13068_2023_2356_MOESM1_ESM.docx 14KB Other download
Fig. 2 428KB Image download
Fig. 5 4675KB Image download
MediaObjects/12947_2023_312_MOESM2_ESM.zip 1542KB Package download
Fig. 4 61KB Image download
Fig. 2 19KB Image download
Fig. 2 408KB Image download
Fig. 4 612KB Image download
Fig. 3 73KB Image download
MediaObjects/12888_2023_5099_MOESM1_ESM.xlsx 38KB Other download
Fig. 2 106KB Image download
【 图 表 】

Fig. 2

Fig. 3

Fig. 4

Fig. 2

Fig. 2

Fig. 4

Fig. 5

Fig. 2

Fig. 3

Fig. 1

Fig. 2

Fig. 1

Fig. 3

Fig. 1

Fig. 1

Scheme 1

40854_2023_507_Article_IEq31.gif

Fig. 1

13690_2023_1151_Article_IEq1.gif

Fig. 10

Fig. 2

Fig. 1

40854_2023_507_Article_IEq23.gif

Fig. 2

Fig. 1

Fig. 6

Fig. 1

Fig. 2

Fig. 2

40854_2023_507_Article_IEq17.gif

Fig. 5

Fig. 1

40517_2023_266_Article_IEq6.gif

Fig. 1

40517_2023_266_Article_IEq4.gif

Fig. 1

40517_2023_266_Article_IEq1.gif

Fig. 2

40517_2023_266_Article_IEq68.gif

40517_2023_266_Article_IEq67.gif

40517_2023_266_Article_IEq66.gif

Fig. 1

40517_2023_266_Article_IEq64.gif

40517_2023_266_Article_IEq62.gif

40517_2023_266_Article_IEq61.gif

40517_2023_266_Article_IEq60.gif

40517_2023_266_Article_IEq59.gif

40517_2023_266_Article_IEq58.gif

40517_2023_266_Article_IEq57.gif

40517_2023_266_Article_IEq56.gif

40517_2023_266_Article_IEq55.gif

40517_2023_266_Article_IEq54.gif

40517_2023_266_Article_IEq52.gif

40517_2023_266_Article_IEq50.gif

40517_2023_266_Article_IEq49.gif

40517_2023_266_Article_IEq48.gif

40517_2023_266_Article_IEq19.gif

40517_2023_266_Article_IEq18.gif

Fig. 2

12888_2023_5115_Article_IEq2.gif

40517_2023_266_Article_IEq10.gif

Fig. 2

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  文献评价指标  
  下载次数:7次 浏览次数:1次