期刊论文详细信息
Orphanet Journal of Rare Diseases
Automated assessment of foot elevation in adults with hereditary spastic paraplegia using inertial measurements and machine learning
Research
Teresa Greinwalder1  Evelyn Loris1  Jürgen Winkler2  Martin Regensburger2  Heiko Gaßner3  Malte Ollenschläger4  Patrick Höfner5  Felix Kluge5  Martin Ullrich5  Bjoern M. Eskofier5 
[1] Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany;Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany;Center for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany;Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany;Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany;Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany;Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany;Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany;
关键词: Gait analysis;    Wearable sensors;    Classification;    Range of motion;    Motion capture;    Muscle spasticity;   
DOI  :  10.1186/s13023-023-02854-8
 received in 2023-04-27, accepted in 2023-08-08,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundHereditary spastic paraplegias (HSPs) cause characteristic gait impairment leading to an increased risk of stumbling or even falling. Biomechanically, gait deficits are characterized by reduced ranges of motion in lower body joints, limiting foot clearance and ankle range of motion. To date, there is no standardized approach to continuously and objectively track the degree of dysfunction in foot elevation since established clinical rating scales require an experienced investigator and are considered to be rather subjective. Therefore, digital disease-specific biomarkers for foot elevation are needed.MethodsThis study investigated the performance of machine learning classifiers for the automated detection and classification of reduced foot dorsiflexion and clearance using wearable sensors. Wearable inertial sensors were used to record gait patterns of 50 patients during standardized 4 ×\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\times$$\end{document} 10 m walking tests at the hospital. Three movement disorder specialists independently annotated symptom severity. The majority vote of these annotations and the wearable sensor data were used to train and evaluate machine learning classifiers in a nested cross-validation scheme.ResultsThe results showed that automated detection of reduced range of motion and foot clearance was possible with an accuracy of 87%. This accuracy is in the range of individual annotators, reaching an average accuracy of 88% compared to the ground truth majority vote. For classifying symptom severity, the algorithm reached an accuracy of 74%.ConclusionHere, we show that the present wearable gait analysis system is able to objectively assess foot elevation patterns in HSP. Future studies will aim to improve the granularity for continuous tracking of disease severity and monitoring therapy response of HSP patients in a real-world environment.

【 授权许可】

CC BY   
© Institut National de la Santé et de la Recherche Médicale (INSERM) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309153939166ZK.pdf 1604KB PDF download
42490_2023_74_Article_IEq37.gif 1KB Image download
42490_2023_74_Article_IEq39.gif 1KB Image download
Fig. 4 1440KB Image download
Fig. 2 349KB Image download
Fig. 1 7857KB Image download
Fig. 3 377KB Image download
Fig. 2 1328KB Image download
Fig. 1 347KB Image download
Fig. 4 3903KB Image download
Fig. 4 376KB Image download
42490_2023_74_Article_IEq50.gif 1KB Image download
Fig. 1 162KB Image download
Fig. 5 422KB Image download
Fig. 1 55KB Image download
Fig. 1 449KB Image download
【 图 表 】

Fig. 1

Fig. 1

Fig. 5

Fig. 1

42490_2023_74_Article_IEq50.gif

Fig. 4

Fig. 4

Fig. 1

Fig. 2

Fig. 3

Fig. 1

Fig. 2

Fig. 4

42490_2023_74_Article_IEq39.gif

42490_2023_74_Article_IEq37.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  文献评价指标  
  下载次数:11次 浏览次数:1次