期刊论文详细信息
BMC Bioinformatics
A novel hybrid model to predict concomitant diseases for Hashimoto’s thyroiditis
Research
Pınar Karadayı Ataş1 
[1] Department of Computer Engineering, Istanbul Arel University, 34537, Buyukcekmece, Istanbul, Turkey;
关键词: Hasimoto’s thyroid;    Autoimmun disease;    Concominant disease;    Machine learning;    Hybrid classification;   
DOI  :  10.1186/s12859-023-05443-5
 received in 2023-04-25, accepted in 2023-08-10,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Hashimoto’s thyroiditis is an autoimmune disorder characterized by the destruction of thyroid cells through immune-mediated mechanisms involving cells and antibodies. The condition can trigger disturbances in metabolism, leading to the development of other autoimmune diseases, known as concomitant diseases. Multiple concomitant diseases may coexist in a single individual, making it challenging to diagnose and manage them effectively. This study aims to propose a novel hybrid algorithm that classifies concomitant diseases associated with Hashimoto’s thyroiditis based on sequences. The approach involves building distinct prediction models for each class and using the output of one model as input for the subsequent one, resulting in a dynamic decision-making process. Genes associated with concomitant diseases were collected alongside those related to Hashimoto’s thyroiditis, and their sequences were obtained from the NCBI site in fasta format. The hybrid algorithm was evaluated against common machine learning algorithms and their various combinations. The experimental results demonstrate that the proposed hybrid model outperforms existing classification methods in terms of performance metrics. The significance of this study lies in its two distinctive aspects. Firstly, it presents a new benchmarking dataset that has not been previously developed in this field, using diverse methods. Secondly, it proposes a more effective and efficient solution that accounts for the dynamic nature of the dataset. The hybrid approach holds promise in investigating the genetic heterogeneity of complex diseases such as Hashimoto’s thyroiditis and identifying new autoimmune disease genes. Additionally, the results of this study may aid in the development of genetic screening tools and laboratory experiments targeting Hashimoto’s thyroiditis genetic risk factors. New software, models, and techniques for computing, including systems biology, machine learning, and artificial intelligence, are used in our study.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202309150932973ZK.pdf 2136KB PDF download
13570_2023_282_Article_IEq18.gif 1KB Image download
Fig. 5 3502KB Image download
Fig. 3 2026KB Image download
40517_2023_267_Article_IEq3.gif 1KB Image download
40517_2023_267_Article_IEq5.gif 1KB Image download
Fig. 3 1254KB Image download
Fig. 10 271KB Image download
Fig. 2 444KB Image download
Fig. 4 238KB Image download
Fig. 2 66KB Image download
40798_2023_622_Article_IEq9.gif 1KB Image download
Fig. 8 537KB Image download
42490_2023_74_Article_IEq30.gif 1KB Image download
Fig. 6 423KB Image download
13068_2023_2361_Article_IEq1.gif 1KB Image download
Fig. 3 390KB Image download
Fig. 1 345KB Image download
42490_2023_74_Article_IEq62.gif 1KB Image download
Fig. 3 423KB Image download
Fig. 2 738KB Image download
Fig. 1 278KB Image download
Fig. 5 3914KB Image download
Fig. 10 992KB Image download
Fig. 1 2326KB Image download
13690_2023_1154_Article_IEq2.gif 1KB Image download
12888_2023_5113_Article_IEq2.gif 1KB Image download
12888_2023_5113_Article_IEq4.gif 1KB Image download
12888_2023_5113_Article_IEq5.gif 1KB Image download
12888_2023_5113_Article_IEq6.gif 1KB Image download
12888_2023_5113_Article_IEq7.gif 1KB Image download
12888_2023_5012_Article_IEq2.gif 1KB Image download
Fig. 1 1889KB Image download
12888_2023_5012_Article_IEq3.gif 1KB Image download
Fig. 2 79KB Image download
Fig. 2 1624KB Image download
Fig. 2 1632KB Image download
Fig. 3 161KB Image download
Fig. 1 530KB Image download
Fig. 4 636KB Image download
Fig. 5 327KB Image download
MediaObjects/12902_2023_1418_MOESM1_ESM.docx 13KB Other download
MediaObjects/13046_2023_2792_MOESM17_ESM.tsv 3KB Other download
Fig. 2 214KB Image download
Fig. 2 104KB Image download
Fig. 1 278KB Image download
Fig. 5 540KB Image download
MediaObjects/13046_2023_2784_MOESM3_ESM.pdf 489KB PDF download
MediaObjects/12888_2023_5096_MOESM1_ESM.doc 74KB Other download
1077KB Image download
13690_2023_1163_Article_IEq1.gif 1KB Image download
13690_2023_1163_Article_IEq2.gif 1KB Image download
MediaObjects/12888_2023_5081_MOESM1_ESM.xls 33KB Other download
Fig. 1 349KB Image download
MediaObjects/12888_2023_5081_MOESM2_ESM.xls 197KB Other download
【 图 表 】

Fig. 1

13690_2023_1163_Article_IEq2.gif

13690_2023_1163_Article_IEq1.gif

Fig. 5

Fig. 1

Fig. 2

Fig. 2

Fig. 5

Fig. 4

Fig. 1

Fig. 3

Fig. 2

Fig. 2

Fig. 2

12888_2023_5012_Article_IEq3.gif

Fig. 1

12888_2023_5012_Article_IEq2.gif

12888_2023_5113_Article_IEq7.gif

12888_2023_5113_Article_IEq6.gif

12888_2023_5113_Article_IEq5.gif

12888_2023_5113_Article_IEq4.gif

12888_2023_5113_Article_IEq2.gif

13690_2023_1154_Article_IEq2.gif

Fig. 1

Fig. 10

Fig. 5

Fig. 1

Fig. 2

Fig. 3

42490_2023_74_Article_IEq62.gif

Fig. 1

Fig. 3

13068_2023_2361_Article_IEq1.gif

Fig. 6

42490_2023_74_Article_IEq30.gif

Fig. 8

40798_2023_622_Article_IEq9.gif

Fig. 2

Fig. 4

Fig. 2

Fig. 10

Fig. 3

40517_2023_267_Article_IEq5.gif

40517_2023_267_Article_IEq3.gif

Fig. 3

Fig. 5

13570_2023_282_Article_IEq18.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  文献评价指标  
  下载次数:5次 浏览次数:1次