BMC Bioinformatics | |
A novel hybrid model to predict concomitant diseases for Hashimoto’s thyroiditis | |
Research | |
Pınar Karadayı Ataş1  | |
[1] Department of Computer Engineering, Istanbul Arel University, 34537, Buyukcekmece, Istanbul, Turkey; | |
关键词: Hasimoto’s thyroid; Autoimmun disease; Concominant disease; Machine learning; Hybrid classification; | |
DOI : 10.1186/s12859-023-05443-5 | |
received in 2023-04-25, accepted in 2023-08-10, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
Hashimoto’s thyroiditis is an autoimmune disorder characterized by the destruction of thyroid cells through immune-mediated mechanisms involving cells and antibodies. The condition can trigger disturbances in metabolism, leading to the development of other autoimmune diseases, known as concomitant diseases. Multiple concomitant diseases may coexist in a single individual, making it challenging to diagnose and manage them effectively. This study aims to propose a novel hybrid algorithm that classifies concomitant diseases associated with Hashimoto’s thyroiditis based on sequences. The approach involves building distinct prediction models for each class and using the output of one model as input for the subsequent one, resulting in a dynamic decision-making process. Genes associated with concomitant diseases were collected alongside those related to Hashimoto’s thyroiditis, and their sequences were obtained from the NCBI site in fasta format. The hybrid algorithm was evaluated against common machine learning algorithms and their various combinations. The experimental results demonstrate that the proposed hybrid model outperforms existing classification methods in terms of performance metrics. The significance of this study lies in its two distinctive aspects. Firstly, it presents a new benchmarking dataset that has not been previously developed in this field, using diverse methods. Secondly, it proposes a more effective and efficient solution that accounts for the dynamic nature of the dataset. The hybrid approach holds promise in investigating the genetic heterogeneity of complex diseases such as Hashimoto’s thyroiditis and identifying new autoimmune disease genes. Additionally, the results of this study may aid in the development of genetic screening tools and laboratory experiments targeting Hashimoto’s thyroiditis genetic risk factors. New software, models, and techniques for computing, including systems biology, machine learning, and artificial intelligence, are used in our study.
【 授权许可】
CC BY
© BioMed Central Ltd., part of Springer Nature 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202309150932973ZK.pdf | 2136KB | download | |
13570_2023_282_Article_IEq18.gif | 1KB | Image | download |
Fig. 5 | 3502KB | Image | download |
Fig. 3 | 2026KB | Image | download |
40517_2023_267_Article_IEq3.gif | 1KB | Image | download |
40517_2023_267_Article_IEq5.gif | 1KB | Image | download |
Fig. 3 | 1254KB | Image | download |
Fig. 10 | 271KB | Image | download |
Fig. 2 | 444KB | Image | download |
Fig. 4 | 238KB | Image | download |
Fig. 2 | 66KB | Image | download |
40798_2023_622_Article_IEq9.gif | 1KB | Image | download |
Fig. 8 | 537KB | Image | download |
42490_2023_74_Article_IEq30.gif | 1KB | Image | download |
Fig. 6 | 423KB | Image | download |
13068_2023_2361_Article_IEq1.gif | 1KB | Image | download |
Fig. 3 | 390KB | Image | download |
Fig. 1 | 345KB | Image | download |
42490_2023_74_Article_IEq62.gif | 1KB | Image | download |
Fig. 3 | 423KB | Image | download |
Fig. 2 | 738KB | Image | download |
Fig. 1 | 278KB | Image | download |
Fig. 5 | 3914KB | Image | download |
Fig. 10 | 992KB | Image | download |
Fig. 1 | 2326KB | Image | download |
13690_2023_1154_Article_IEq2.gif | 1KB | Image | download |
12888_2023_5113_Article_IEq2.gif | 1KB | Image | download |
12888_2023_5113_Article_IEq4.gif | 1KB | Image | download |
12888_2023_5113_Article_IEq5.gif | 1KB | Image | download |
12888_2023_5113_Article_IEq6.gif | 1KB | Image | download |
12888_2023_5113_Article_IEq7.gif | 1KB | Image | download |
12888_2023_5012_Article_IEq2.gif | 1KB | Image | download |
Fig. 1 | 1889KB | Image | download |
12888_2023_5012_Article_IEq3.gif | 1KB | Image | download |
Fig. 2 | 79KB | Image | download |
Fig. 2 | 1624KB | Image | download |
Fig. 2 | 1632KB | Image | download |
Fig. 3 | 161KB | Image | download |
Fig. 1 | 530KB | Image | download |
Fig. 4 | 636KB | Image | download |
Fig. 5 | 327KB | Image | download |
MediaObjects/12902_2023_1418_MOESM1_ESM.docx | 13KB | Other | download |
MediaObjects/13046_2023_2792_MOESM17_ESM.tsv | 3KB | Other | download |
Fig. 2 | 214KB | Image | download |
Fig. 2 | 104KB | Image | download |
Fig. 1 | 278KB | Image | download |
Fig. 5 | 540KB | Image | download |
MediaObjects/13046_2023_2784_MOESM3_ESM.pdf | 489KB | download | |
MediaObjects/12888_2023_5096_MOESM1_ESM.doc | 74KB | Other | download |
1077KB | Image | download | |
13690_2023_1163_Article_IEq1.gif | 1KB | Image | download |
13690_2023_1163_Article_IEq2.gif | 1KB | Image | download |
MediaObjects/12888_2023_5081_MOESM1_ESM.xls | 33KB | Other | download |
Fig. 1 | 349KB | Image | download |
MediaObjects/12888_2023_5081_MOESM2_ESM.xls | 197KB | Other | download |
【 图 表 】
Fig. 1
13690_2023_1163_Article_IEq2.gif
13690_2023_1163_Article_IEq1.gif
Fig. 5
Fig. 1
Fig. 2
Fig. 2
Fig. 5
Fig. 4
Fig. 1
Fig. 3
Fig. 2
Fig. 2
Fig. 2
12888_2023_5012_Article_IEq3.gif
Fig. 1
12888_2023_5012_Article_IEq2.gif
12888_2023_5113_Article_IEq7.gif
12888_2023_5113_Article_IEq6.gif
12888_2023_5113_Article_IEq5.gif
12888_2023_5113_Article_IEq4.gif
12888_2023_5113_Article_IEq2.gif
13690_2023_1154_Article_IEq2.gif
Fig. 1
Fig. 10
Fig. 5
Fig. 1
Fig. 2
Fig. 3
42490_2023_74_Article_IEq62.gif
Fig. 1
Fig. 3
13068_2023_2361_Article_IEq1.gif
Fig. 6
42490_2023_74_Article_IEq30.gif
Fig. 8
40798_2023_622_Article_IEq9.gif
Fig. 2
Fig. 4
Fig. 2
Fig. 10
Fig. 3
40517_2023_267_Article_IEq5.gif
40517_2023_267_Article_IEq3.gif
Fig. 3
Fig. 5
13570_2023_282_Article_IEq18.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]