期刊论文详细信息
BMC Bioinformatics
Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimization
Research
Muhammad Usman Ghani Khan1  Fareed Ahmad2  Ahsen Tahir3  Farhan Masud4 
[1] Department of Computer Science, University of Engineering and Technology, G.T. Road, 54890, Lahore, Punjab, Pakistan;National Center of Artificial Intelligence, Al-Khawarizmi Institute of Computer Science, UET, Lahore, Pakistan;Department of Computer Science, University of Engineering and Technology, G.T. Road, 54890, Lahore, Punjab, Pakistan;Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Outfall road, 54000, Lahore, Punjab, Pakistan;Department of Electrical Engineering, University of Engineering and Technology, G.T. road, 54890, Lahore, Punjab, Pakistan;Department of Statistics and Computer Science, Faculty of Life Sciences Business Management, University of Veterinary and Animal Sciences, Outfall Road, 54000, Lahore, Punjab, Pakistan;
关键词: Pathogen classification;    Deep learning models;    Ensemble learning;    Image patching;    Feature fusion;    Tuning hyper-parameter;   
DOI  :  10.1186/s12859-023-05398-7
 received in 2023-03-09, accepted in 2023-06-23,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Pathogenic bacteria present a major threat to human health, causing various infections and illnesses, and in some cases, even death. The accurate identification of these bacteria is crucial, but it can be challenging due to the similarities between different species and genera. This is where automated classification using convolutional neural network (CNN) models can help, as it can provide more accurate, authentic, and standardized results.In this study, we aimed to create a larger and balanced dataset by image patching and applied different variations of CNN models, including training from scratch, fine-tuning, and weight adjustment, and data augmentation through random rotation, reflection, and translation. The results showed that the best results were achieved through augmentation and fine-tuning of deep models. We also modified existing architectures, such as InceptionV3 and MobileNetV2, to better capture complex features. The robustness of the proposed ensemble model was evaluated using two data splits (7:2:1 and 6:2:2) to see how performance changed as the training data was increased from 10 to 20%. In both cases, the model exhibited exceptional performance. For the 7:2:1 split, the model achieved an accuracy of 99.91%, F-Score of 98.95%, precision of 98.98%, recall of 98.96%, and MCC of 98.92%. For the 6:2:2 split, the model yielded an accuracy of 99.94%, F-Score of 99.28%, precision of 99.31%, recall of 98.96%, and MCC of 99.26%. This demonstrates that automatic classification using the ensemble model can be a valuable tool for diagnostic staff and microbiologists in accurately identifying pathogenic bacteria, which in turn can help control epidemics and minimize their social and economic impact.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309146625380ZK.pdf 2435KB PDF download
40798_2023_598_Article_IEq8.gif 1KB Image download
40798_2023_598_Article_IEq27.gif 1KB Image download
MediaObjects/13750_2019_173_MOESM1_ESM.xlsx 35KB Other download
40708_2023_197_Article_IEq51.gif 1KB Image download
40708_2023_197_Article_IEq55.gif 1KB Image download
MediaObjects/13046_2023_2747_MOESM1_ESM.pdf 442KB PDF download
847KB Image download
MediaObjects/13068_2023_2358_MOESM2_ESM.xlsx 6489KB Other download
Fig. 2 357KB Image download
40708_2023_197_Article_IEq75.gif 1KB Image download
40708_2023_197_Article_IEq79.gif 1KB Image download
Fig. 4 369KB Image download
40708_2023_197_Article_IEq82.gif 1KB Image download
40708_2023_197_Article_IEq83.gif 1KB Image download
40708_2023_197_Article_IEq81.gif 1KB Image download
Fig. 1 520KB Image download
40708_2023_197_Article_IEq84.gif 1KB Image download
433KB Image download
40708_2023_197_Article_IEq86.gif 1KB Image download
40708_2023_197_Article_IEq87.gif 1KB Image download
MediaObjects/40708_2023_197_MOESM1_ESM.pdf 1048KB PDF download
Fig. 1 467KB Image download
Fig. 2 473KB Image download
MediaObjects/12864_2023_9476_MOESM4_ESM.tif 2067KB Other download
Fig. 2 1370KB Image download
41239_2023_389_Article_IEq8.gif 1KB Image download
Fig. 2 712KB Image download
Fig. 3 535KB Image download
Fig. 1 1250KB Image download
Fig. 1 535KB Image download
41239_2023_389_Article_IEq13.gif 1KB Image download
MediaObjects/10194_2023_1612_MOESM3_ESM.pdf 480KB PDF download
Fig. 4 1141KB Image download
Fig. 3 305KB Image download
MediaObjects/41408_2023_881_MOESM1_ESM.pdf 381KB PDF download
Fig. 1 1111KB Image download
Fig. 3 597KB Image download
Fig. 1 1920KB Image download
Fig. 3 939KB Image download
Fig. 2 291KB Image download
Fig. 1 906KB Image download
Fig. 5 3011KB Image download
MediaObjects/40560_2023_674_MOESM3_ESM.docx 134KB Other download
Fig. 3 536KB Image download
Fig. 1 361KB Image download
Fig. 4 197KB Image download
Fig. 2 117KB Image download
MediaObjects/40560_2023_674_MOESM5_ESM.docx 24KB Other download
Fig. 2 303KB Image download
MediaObjects/41100_2023_490_MOESM2_ESM.xlsx 11KB Other download
Fig. 4 127KB Image download
MediaObjects/13690_2023_1146_MOESM1_ESM.docx 38KB Other download
Fig. 5 116KB Image download
MediaObjects/13690_2023_1146_MOESM2_ESM.docx 59KB Other download
MediaObjects/40560_2023_674_MOESM8_ESM.docx 58KB Other download
Fig. 3 169KB Image download
MediaObjects/40560_2023_674_MOESM9_ESM.docx 2364KB Other download
Fig. 1 53KB Image download
Fig. 2 4394KB Image download
Fig. 8 274KB Image download
41239_2023_389_Article_IEq56.gif 1KB Image download
MediaObjects/10194_2023_1630_MOESM1_ESM.docx 26KB Other download
Fig. 4 2564KB Image download
Fig. 9 164KB Image download
Fig. 2 261KB Image download
Fig. 4 466KB Image download
Fig. 3 1945KB Image download
40691_2023_344_Figd_HTML.gif 116KB Image download
Fig. 3 412KB Image download
Fig. 8 266KB Image download
MediaObjects/12936_2023_4632_MOESM1_ESM.pdf 1685KB PDF download
Fig. 1 919KB Image download
Fig. 3 1846KB Image download
41239_2023_389_Article_IEq68.gif 1KB Image download
Fig. 5 358KB Image download
Fig. 4 502KB Image download
MediaObjects/40560_2023_674_MOESM10_ESM.docx 34KB Other download
41239_2023_389_Article_IEq72.gif 1KB Image download
MediaObjects/40560_2023_674_MOESM11_ESM.docx 126KB Other download
Fig. 5 2426KB Image download
MediaObjects/40560_2023_674_MOESM12_ESM.docx 121KB Other download
Fig. 1 804KB Image download
Fig. 3 1963KB Image download
12903_2023_3210_Article_IEq4.gif 1KB Image download
Fig. 4 1520KB Image download
MediaObjects/40560_2023_674_MOESM15_ESM.docx 143KB Other download
12936_2023_4510_Article_IEq4.gif 1KB Image download
MediaObjects/12974_2023_2840_MOESM3_ESM.xlsx 1610KB Other download
Fig. 2 177KB Image download
Fig. 3 166KB Image download
12936_2023_4510_Article_IEq8.gif 1KB Image download
Fig. 3 84KB Image download
Fig. 10 3867KB Image download
MediaObjects/42358_2023_298_MOESM1_ESM.docx 30046KB Other download
Fig. 8 918KB Image download
MediaObjects/12944_2023_1855_MOESM3_ESM.docx 16KB Other download
Fig. 3 107KB Image download
Fig. 2 840KB Image download
Fig. 5 198KB Image download
Fig. 2 167KB Image download
【 图 表 】

Fig. 2

Fig. 5

Fig. 2

Fig. 3

Fig. 8

Fig. 10

Fig. 3

12936_2023_4510_Article_IEq8.gif

Fig. 3

Fig. 2

12936_2023_4510_Article_IEq4.gif

Fig. 4

12903_2023_3210_Article_IEq4.gif

Fig. 3

Fig. 1

Fig. 5

41239_2023_389_Article_IEq72.gif

Fig. 4

Fig. 5

41239_2023_389_Article_IEq68.gif

Fig. 3

Fig. 1

Fig. 8

Fig. 3

40691_2023_344_Figd_HTML.gif

Fig. 3

Fig. 4

Fig. 2

Fig. 9

Fig. 4

41239_2023_389_Article_IEq56.gif

Fig. 8

Fig. 2

Fig. 1

Fig. 3

Fig. 5

Fig. 4

Fig. 2

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 5

Fig. 1

Fig. 2

Fig. 3

Fig. 1

Fig. 3

Fig. 1

Fig. 3

Fig. 4

41239_2023_389_Article_IEq13.gif

Fig. 1

Fig. 1

Fig. 3

Fig. 2

41239_2023_389_Article_IEq8.gif

Fig. 2

Fig. 2

Fig. 1

40708_2023_197_Article_IEq87.gif

40708_2023_197_Article_IEq86.gif

40708_2023_197_Article_IEq84.gif

Fig. 1

40708_2023_197_Article_IEq81.gif

40708_2023_197_Article_IEq83.gif

40708_2023_197_Article_IEq82.gif

Fig. 4

40708_2023_197_Article_IEq79.gif

40708_2023_197_Article_IEq75.gif

Fig. 2

40708_2023_197_Article_IEq55.gif

40708_2023_197_Article_IEq51.gif

40798_2023_598_Article_IEq27.gif

40798_2023_598_Article_IEq8.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  文献评价指标  
  下载次数:5次 浏览次数:0次