期刊论文详细信息
卷:12
Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview
Review
关键词: BLOOD-BRAIN-BARRIER;    AMYLOID-BETA-PEPTIDE;    CEREBRAL GLUCOSE-METABOLISM;    MILD COGNITIVE IMPAIRMENT;    POSITRON-EMISSION-TOMOGRAPHY;    GAMMA-SECRETASE INHIBITOR;    CELL PLASMA-MEMBRANE;    OXIDATIVE STRESS;    NEUROTROPHIC FACTOR;    GENE-THERAPY;   
DOI  :  10.3390/cells12162019
来源: SCIE
【 摘 要 】

The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's prin-cipal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 trans-porters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.

【 授权许可】

   

  文献评价指标  
  下载次数:0次 浏览次数:2次