期刊论文详细信息
卷:93
A mutually boosting dual sensor computational camera for high quality dark videography
Article
关键词: FUSION NETWORK;    IMAGE FUSION;    VIDEO;    ENHANCEMENT;   
DOI  :  10.1016/j.inffus.2023.01.013
来源: SCIE
【 摘 要 】

Videos captured under low light conditions suffer from severe noise. A variety of efforts have been devoted to image/video noise suppression and made large progress. However, in extremely dark scenarios, extensive photon starvation would hamper extracting latent structures buried in noise. Instead, developing an imaging system collecting more photons is a more effective way for high-quality video capture in dark environments. In this paper, we propose to build a dual-sensor camera to additionally collect the photons in NIR wavelength, and make use of the correlation between RGB and near-infrared (NIR) spectrum to perform high-quality reconstruction from noisy dark video pairs. In hardware, we build a compact dual-sensor camera capturing parallax-free RGB and NIR videos simultaneously. Computationally, we propose a dual-channel multi-frame attention network (DCMAN) utilizing spatial-temporal-spectral priors to mutually boost the quality of low-light RGB and NIR videos. In addition, we build a high-quality paired RGB and NIR video dataset, based on which the approach can be applied to different sensors easily by training the DCMAN model with simulated noisy input following a physical-process-based CMOS noise model. Both experiments on synthetic and real videos validate the performance of this compact dual-sensor camera design and the corresponding reconstruction algorithm in dark videography.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次