期刊论文详细信息
卷:48
Superior catalytic effect of titania - porous carbon composite for the storage of hydrogen in MgH2 and lithium in a Li ion battery
Article
关键词: ACTIVATED CARBON;    COMPLEX HYDRIDES;    ANODE MATERIALS;    BEHAVIOR;    PERFORMANCE;    NI;    KINETICS;    NANORODS;    CORE;    SIZE;   
DOI  :  10.1016/j.ijhydene.2023.03.226
来源: SCIE
【 摘 要 】

A novel nanocomposite (0.2TiO(2) + AC) with two promising applications is demonstrated, (i) as an additive for promoting hydrogen storage in magnesium hydride, (ii) as an active electrode material for hosting lithium in Li ion batteries (surface area of activated carbon (AC): 491 m(2)/g, pore volume: 0.252 cc/g, size of TiO2 particles: 20-30 nm). Transmission electron microscopy study provides evidence that well dispersed TiO2 nanoparticles are enclosed by amorphous carbon nets. A thermogravimetry-differential scanning calorimetry (TG-DSC) study proves that the nanocomposite is thermally stable up to similar to 400 degrees C. Volumetric hydrogen storage tests and DSC studies further prove that a 3 wt% ofA novel nanocomposite (0.2TiO(2) + AC) with two promising applications is demonstrated, (i) as an additive for promoting hydrogen storage in magnesium hydride, (ii) as an active electrode material for hosting lithium in Li ion batteries (surface area of activated carbon (AC): 491 m(2)/g, pore volume: 0.252 cc/g, size of TiO2 particles: 20-30 nm). Transmission electron microscopy study provides evidence that well dispersed TiO2 nanoparticles are enclosed by amorphous carbon nets. A thermogravimetry-differential scanning calorimetry (TG-DSC) study proves that the nanocomposite is thermally stable up to similar to 400 degrees C. Volumetric hydrogen storage tests and DSC studies further prove that a 3 wt% of 0.2TiO(2) + AC nanocomposite as additive not only lowers the dehydrogenation temperature of MgH2 over 100 degrees C but also maintains the performance consistency. Moreover, as a working electrode for Li ion battery, 0.2TiO(2)+AC offers a reversible capacity of 400 mAh/g at the charge/discharge rate of 0.1C and consistent stability up to 43 cycles with the capacity retention of 160 mAh/g at 0.4C. Such cost effective-high performance materials with applications in two promising areas of energy storage are highly desired for progressing towards sustainable energy development. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:1次