卷:48 | |
Development of a pneumatic actuated low-pressure direct injection gas injector for hydrogen-fueled internal combustion engines | |
Article | |
关键词: COMPRESSION IGNITION; | |
DOI : 10.1016/j.ijhydene.2022.12.023 | |
来源: SCIE |
【 摘 要 】
Mixture formation is one of the greatest challenges for the development of robust and efficient hydrogen-fueled internal combustion engines. In many reviews and research papers, authors pointed out that direct injection (DI) has noteworthy advantages over a port fuel injection (PFI), such as higher power output, higher efficiency, the possibility of mixture stratification to control NOx-formation and reduce heat losses and above all to mitigate combustion abnormalities such as back-firing and pre-ignitions. When consid-ering pressurized gas tanks for on-vehicle hydrogen storage, a low-pressure (LP) injection system is advantageous since the tank capacity can be better exploited accordingly. The low gas density upstream of the injector requires cross-sectional areas far larger than any other injectors for direct injection in today's gasoline or diesel engines. The injector design proposed in this work consists of a flat valve seat to enable the achievement of lifetime requirements in heavy-duty applications. The gas supply pressure is used as the energy source for the actuation of the valve plate by means of a pneumatic actuator. This article describes the design and the performed tests carried out to prove the concept readiness of the new LP-DI-injector.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
【 授权许可】
Free