期刊论文详细信息
卷:234
Simulation of X-ray projections on GPU: Benchmarking gVirtualXray with clinically realistic phantoms
Article
关键词: MONTE-CARLO SIMULATIONS;    COMPUTATION;    VALIDATION;   
DOI  :  10.1016/j.cmpb.2023.107500
来源: SCIE
【 摘 要 】

Background and objectives: This study provides a quantitative comparison of images created using gVirtu-alXray (gVXR) to both Monte Carlo (MC) and real images of clinically realistic phantoms. gVirtualXray is an open-source framework that relies on the Beer-Lambert law to simulate X-ray images in realtime on a graphics processor unit (GPU) using triangular meshes. Methods: Images are generated with gVirtualXray and compared with a corresponding ground truth image of an anthropomorphic phantom: (i) an X-ray projection generated using a Monte Carlo simulation code, (ii) real digitally reconstructed radiographs (DRRs), (iii) computed tomography (CT) slices, and (iv) a real radiograph acquired with a clinical X-ray imaging system. When real images are involved, the simulations are used in an image registration framework so that the two images are aligned. Results: The mean absolute percentage error (MAPE) between the images simulated with gVirtualXray and MC is 3.12%, the zero-mean normalised cross-correlation (ZNCC) is 99.96% and the structural similarity index (SSIM) is 0.99. The run-time is 10 days for MC and 23 ms with gVirtualXray. Images simulated using surface models segmented from a CT scan of the Lungman chest phantom were similar to (i) DRRs computed from the CT volume and (ii) an actual digital radiograph. CT slices reconstructed from images simulated with gVirtualXray were comparable to the corresponding slices of the original CT volume. Conclusions: When scattering can be ignored, accurate images that would take days using MC can be generated in milliseconds with gVirtualXray. This speed of execution enables the use of repetitive simu-lations with varying parameters, e.g. to generate training data for a deep-learning algorithm, and to min-imise the objective function of an optimisation problem in image registration. The use of surface models enables the combination of X-ray simulation with real-time soft-tissue deformation and character anima-tion, which can be deployed in virtual reality applications. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次