期刊论文详细信息
卷:240
A novel epileptic seizure prediction method based on synchroextracting transform and 1-dimensional convolutional neural network
Article
关键词: FOURIER-TRANSFORM;    FREQUENCY;    CNN;   
DOI  :  10.1016/j.cmpb.2023.107678
来源: SCIE
【 摘 要 】

Background and objective: Epilepsy is a serious brain disorder affecting more than 50 million people worldwide. If epileptic seizures can be predicted in advance, patients can take measures to avoid unfortunate consequences. Important approaches for epileptic seizure predictions are often signal transformation and classification using electroencephalography (EEG) signals. A time-frequency (TF) transformation, such as the short-term Fourier transform (STFT), has been widely used over many years but curtailed by the Heisenberg uncertainty principle. This research focuses on decomposing epileptic EEG signals with a higher resolution so that an epileptic seizure can be predicted accurately before its episodes.Methods: This study applies a synchroextracting transformation (SET) and singular value decomposition (SET-SVD) to improve the time-frequency resolution. The SET is a more energy-concentrated TF representation than classical TF analysis methods.Results: The pre-seizure classification method employing a 1-dimensional convolutional neural network (1D-CNN) reached an accuracy of 99.71% (the CHB-MIT database) and 100% (the Bonn University database). The experiments on the CHB-MIT show that the accuracy, sensitivity and specificity from the SET-SVD method, compared with the results of the STFT, are increased by 8.12%, 6.24% and 13.91%, respectively. In addition, a multi-layer perceptron (MLP) was also used as a classifier. Its experimental results also show that the SET-SVD generates a higher accuracy, sensitivity and specificity by 5.0%, 2.41% and 11.42% than the STFT, respectively.Conclusions: The results of two classification methods (the MLP and 1D-CNN) show that the SET-SVD has the capacity to extract more accurate information than the STFT. The 1D-CNN model is suitable for a fast and accurate patient-specific EEG classification.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次