期刊论文详细信息
卷:34
Deep Semantic Multimodal Hashing Network for Scalable Image-Text and Video-Text Retrievals
Article
关键词: SEARCH;   
DOI  :  10.1109/TNNLS.2020.2997020
来源: SCIE
【 摘 要 】

Hashing has been widely applied to multimodal retrieval on large-scale multimedia data due to its efficiency in computation and storage. In this article, we propose a novel deep semantic multimodal hashing network (DSMHN) for scalable image-text and video-text retrieval. The proposed deep hashing framework leverages 2-D convolutional neural networks (CNN) as the backbone network to capture the spatial information for image-text retrieval, while the 3-D CNN as the backbone network to capture the spatial and temporal information for video-text retrieval. In the DSMHN, two sets of modality-specific hash functions are jointly learned by explicitly preserving both intermodality similarities and intramodality semantic labels. Specifically, with the assumption that the learned hash codes should be optimal for the classification task, two stream networks are jointly trained to learn the hash functions by embedding the semantic labels on the resultant hash codes. Moreover, a unified deep multimodal hashing framework is proposed to learn compact and high-quality hash codes by exploiting the feature representation learning, intermodality similarity-preserving learning, semantic label-preserving learning, and hash function learning with different types of loss functions simultaneously. The proposed DSMHN method is a generic and scalable deep hashing framework for both image-text and video-text retrievals, which can be flexibly integrated with different types of loss functions. We conduct extensive experiments for both single-modal- and cross-modal-retrieval tasks on four widely used multimodal-retrieval data sets. Experimental results on both image-text- and video-text-retrieval tasks demonstrate that the DSMHN significantly outperforms the state-of-the-art methods.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次