期刊论文详细信息
CoSeg: Cognitively Inspired Unsupervised Generic Event Segmentation
Article; Early Access
关键词: PERCEPTION;    MEMORY;   
DOI  :  10.1109/TNNLS.2023.3263387
来源: SCIE
【 摘 要 】

Some cognitive research has discovered that humans accomplish event segmentation as a side effect of event anticipation. Inspired by this discovery, we propose a simple yet effective end-to-end self-supervised learning framework for event segmentation/boundary detection. Unlike the mainstream clustering-based methods, our framework exploits a transformer-based feature reconstruction scheme to detect event boundaries by reconstruction errors. This is consistent with the fact that humans spot new events by leveraging the deviation between their prediction and what is perceived. Thanks to their heterogeneity in semantics, the frames at boundaries are difficult to be reconstructed (generally with large reconstruction errors), which is favorable for event boundary detection. In addition, since the reconstruction occurs on the semantic feature level instead of the pixel level, we develop a temporal contrastive feature embedding (TCFE) module to learn the semantic visual representation for frame feature reconstruction (FFR). This procedure is like humans building up experiences with long-term memory. The goal of our work is to segment generic events rather than localize some specific ones. We focus on achieving accurate event boundaries. As a result, we adopt the F1 score (Precision/Recall) as our primary evaluation metric for a fair comparison with previous approaches. Meanwhile, we also calculate the conventional frame-based mean over frames (MoF) and intersection over union (IoU) metric. We thoroughly benchmark our work on four publicly available datasets and demonstrate much better results. The source code is available at https://github.com/wang3702/CoSeg.

【 授权许可】

Free   

  文献评价指标  
  下载次数:0次 浏览次数:0次