卷:10 | |
Easy Ensemble: Simple Deep Ensemble Learning for Sensor-Based Human Activity Recognition | |
Article | |
关键词: CONVOLUTIONAL NEURAL-NETWORK; SMARTPHONE; | |
DOI : 10.1109/JIOT.2022.3222221 | |
来源: SCIE |
【 摘 要 】
Sensor-based human activity recognition (HAR) is a paramount technology in the Internet of Things services. HAR using representation learning, which automatically learns a feature representation from raw data, is the mainstream method because it is difficult to interpret relevant information from raw sensor data to design meaningful features. Ensemble learning is a robust approach to improve generalization performance; however, deep ensemble learning requires various procedures, such as data partitioning and training multiple models, which are time-consuming and computationally expensive. In this study, we propose an easy ensemble (EE) for HAR, which enables the easy implementation of deep ensemble learning in a single model. In addition, we propose various techniques (input variationer, stepwise ensemble, and channel shuffle) for the EE. Experiments on a benchmark data set for HAR demonstrated the effectiveness of EE and various techniques and their characteristics compared with conventional ensemble learning methods.
【 授权许可】
Free