Geoenvironmental Disasters | |
Experimental investigation on grout propagation in poured aggregates for controlling water inrush in tunnels with flowing water | |
Research | |
Wanghua Sui1  Gailing Zhang1  Zongyuan Liu2  Jinxi Liang3  Ruijian Li3  Deguang Mao4  | |
[1] School of Resources and Geosciences, Institute of Mine Water Hazard Prevention and Control Technology, China University of Mining and Technology, 221116, Xuzhou, China;School of Resources and Geosciences, Institute of Mine Water Hazard Prevention and Control Technology, China University of Mining and Technology, 221116, Xuzhou, China;Chongqing Architectural Design Institute Co., LTD, 400010, Chongqing, China;School of Resources and Geosciences, Institute of Mine Water Hazard Prevention and Control Technology, China University of Mining and Technology, 221116, Xuzhou, China;National Coal Mine Water Hazard Prevention Engineering Technology Research Center, 234000, Suzhou, Anhui, China;School of Resources and Geosciences, Institute of Mine Water Hazard Prevention and Control Technology, China University of Mining and Technology, 221116, Xuzhou, China;Shanghai Urban Construction Design and Research Institute (Group) Co., Ltd, 200125, Shanghai, China; | |
关键词: Groundwater inrush disaster; Inundated tunnel; Sealing efficiency; Grouting; Flowing water; Scale model; Cement/sodium silicate; | |
DOI : 10.1186/s40677-023-00244-7 | |
received in 2022-12-29, accepted in 2023-05-31, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
BackgroundIn recent years, the technology of blocking and grouting of has been widely used in the treatment of groundwater inrush in tunnels in China’s mines. Studies have been carried out on the aggregates pouring under hydrodynamic conditions; however, there is lack of studies of the grout propagation in the pouring aggregate mass, which formed in the earlier stage. This paper presents an experimental investigation of grout propagation in poured aggregates with flowing water, which focused on the second stage, i.e., the grouting stage, after the first stage of aggregates pouring in the salvage of an inundated underground tunnel.ResultsIn this work, a visualized tunnel replica with flowing water was adopted to investigate the main effects of sealing efficiency, water pressure variation, propagation mechanism during grouting in the poured aggregates with different grain sizes and flowing water conditions. A series of experiments with orthogonal array design were carried out, and the propagation of cement/sodium silicate and the change characteristics of fluid pressure in the tunnel were obtained. The results show that the main effects on the sealing efficiency of grouting in poured aggregates with flowing water in a descending order is cement/sodium silicate ratio, relative density of aggregates, particle size distribution of aggregates, and final water pressure difference of both ends of aggregates segment. The cementation form of grouted aggregates has four types; T shape, H shape, O shape and shell shape. The main mode of grout propagation includes three types; permeation filling mode, compaction- permeation mode, and compaction-fracturing mode, which reflects the influence of grain size, density of aggregates and grouting pressure. The variation of water pressure can be divided into four categories; overall ascending type, step ascending type, concave type, and convex type. The curve type mainly depends on water pressure, water flowrate, relative density and grain size of aggregates, gel time, propagation mechanism of grout.ConclusionThe flow rate after grouting has decreased by approximately 60% to 86% compared to that before grouting, bulk hydraulic conductivity decreased by more than 80%, reflecting a great improvement of the sealing efficiency in the grouting stage after the pouring stage. The research on grout propagation in different graded aggregate mass has guiding significance for the design and construction of a rapid disaster treatment after groundwater inrush.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202309076815479ZK.pdf | 3709KB | download | |
40517_2023_252_Article_IEq82.gif | 1KB | Image | download |
Fig. 1 | 119KB | Image | download |
40517_2023_252_Article_IEq103.gif | 1KB | Image | download |
MediaObjects/41408_2023_868_MOESM1_ESM.docx | 3433KB | Other | download |
MediaObjects/12888_2023_4977_MOESM1_ESM.doc | 99KB | Other | download |
MediaObjects/41408_2023_850_MOESM1_ESM.docx | 123KB | Other | download |
Fig. 5 | 901KB | Image | download |
40517_2023_252_Article_IEq137.gif | 1KB | Image | download |
Fig. 5 | 214KB | Image | download |
13690_2023_1130_Article_IEq4.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq5.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq6.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq7.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq8.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq9.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq10.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq11.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq12.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq13.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq14.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq15.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq16.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq17.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq18.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq19.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq20.gif | 1KB | Image | download |
Fig. 2 | 504KB | Image | download |
13690_2023_1130_Article_IEq22.gif | 1KB | Image | download |
Fig. 2 | 35KB | Image | download |
MediaObjects/12888_2023_4949_MOESM1_ESM.docx | 15KB | Other | download |
13690_2023_1130_Article_IEq25.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq26.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq27.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq28.gif | 1KB | Image | download |
13690_2023_1130_Article_IEq29.gif | 1KB | Image | download |
Fig. 1 | 1112KB | Image | download |
【 图 表 】
Fig. 1
13690_2023_1130_Article_IEq29.gif
13690_2023_1130_Article_IEq28.gif
13690_2023_1130_Article_IEq27.gif
13690_2023_1130_Article_IEq26.gif
13690_2023_1130_Article_IEq25.gif
Fig. 2
13690_2023_1130_Article_IEq22.gif
Fig. 2
13690_2023_1130_Article_IEq20.gif
13690_2023_1130_Article_IEq19.gif
13690_2023_1130_Article_IEq18.gif
13690_2023_1130_Article_IEq17.gif
13690_2023_1130_Article_IEq16.gif
13690_2023_1130_Article_IEq15.gif
13690_2023_1130_Article_IEq14.gif
13690_2023_1130_Article_IEq13.gif
13690_2023_1130_Article_IEq12.gif
13690_2023_1130_Article_IEq11.gif
13690_2023_1130_Article_IEq10.gif
13690_2023_1130_Article_IEq9.gif
13690_2023_1130_Article_IEq8.gif
13690_2023_1130_Article_IEq7.gif
13690_2023_1130_Article_IEq6.gif
13690_2023_1130_Article_IEq5.gif
13690_2023_1130_Article_IEq4.gif
Fig. 5
40517_2023_252_Article_IEq137.gif
Fig. 5
40517_2023_252_Article_IEq103.gif
Fig. 1
40517_2023_252_Article_IEq82.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]