International Journal of Health Geographics | |
A practical illustration of spatial smoothing methods for disconnected regions with INLA: spatial survey on overweight and obesity in Malaysia | |
Methodology | |
Christel Faes1  Khairul Nizam Abdul Maulud2  Maria Safura Mohamad3  | |
[1] Data Science Institute, I-BioStat, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium;Department of Civil Engineering, Faculty of Engineering & Built Environment, National University of Malaysia, 43600, Bangi, Selangor, Malaysia;Earth Observation Centre, Institute of Climate Change, National University of Malaysia, 43600, Bangi, Selangor, Malaysia;Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland; | |
关键词: Bayesian hierarchical modelling; Children; Disconnected regions; Disease mapping; INLA; Malaysia; Obesity; Overweight; | |
DOI : 10.1186/s12942-023-00336-5 | |
received in 2023-01-25, accepted in 2023-06-01, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
BackgroundNational prevalence could mask subnational heterogeneity in disease occurrence, and disease mapping is an important tool to illustrate the spatial pattern of disease. However, there is limited information on techniques for the specification of conditional autoregressive models in disease mapping involving disconnected regions. This study explores available techniques for producing district-level prevalence estimates for disconnected regions, using as an example childhood overweight in Malaysia, which consists of the Peninsular and Borneo regions separated by the South China Sea. We used data from Malaysia National Health and Morbidity Survey conducted in 2015. We adopted Bayesian hierarchical modelling using the integrated nested Laplace approximation (INLA) program in R-software to model the spatial distribution of overweight among 6301 children aged 5–17 years across 144 districts located in two disconnected regions. We illustrate different types of spatial models for prevalence mapping across disconnected regions, taking into account the survey design and adjusting for district-level demographic and socioeconomic covariates.ResultsThe spatial model with split random effects and a common intercept has the lowest Deviance and Watanabe Information Criteria. There was evidence of a spatial pattern in the prevalence of childhood overweight across districts. An increasing trend in smoothed prevalence of overweight was observed when moving from the east to the west of the Peninsular and Borneo regions. The proportion of Bumiputera ethnicity in the district had a significant negative association with childhood overweight: the higher the proportion of Bumiputera ethnicity in the district, the lower the prevalence of childhood overweight.ConclusionThis study illustrates different available techniques for mapping prevalence across districts in disconnected regions using survey data. These techniques can be utilized to produce reliable subnational estimates for any areas that comprise of disconnected regions. Through the example, we learned that the best-fit model was the one that considered the separate variations of the individual regions. We discovered that the occurrence of childhood overweight in Malaysia followed a spatial pattern with an east–west gradient trend, and we identified districts with high prevalence of overweight. This information could help policy makers in making informed decisions for targeted public health interventions in high-risk areas.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202309070076422ZK.pdf | 1828KB | download | |
Fig. 7 | 320KB | Image | download |
41116_2023_37_Article_IEq3.gif | 1KB | Image | download |
Fig. 1 | 41KB | Image | download |
41116_2023_37_Article_IEq22.gif | 1KB | Image | download |
41116_2023_37_Article_IEq39.gif | 1KB | Image | download |
Fig. 2 | 465KB | Image | download |
41116_2023_37_Article_IEq40.gif | 1KB | Image | download |
MediaObjects/12888_2023_4902_MOESM1_ESM.docx | 27KB | Other | download |
41116_2023_37_Article_IEq42.gif | 1KB | Image | download |
41116_2023_37_Article_IEq43.gif | 1KB | Image | download |
41116_2023_37_Article_IEq44.gif | 1KB | Image | download |
41116_2023_37_Article_IEq109.gif | 1KB | Image | download |
Fig. 2 | 56KB | Image | download |
Fig. 4 | 169KB | Image | download |
Fig. 3 | 123KB | Image | download |
41116_2023_37_Article_IEq112.gif | 1KB | Image | download |
MediaObjects/12888_2023_4980_MOESM1_ESM.docx | 19KB | Other | download |
MediaObjects/12888_2023_4980_MOESM2_ESM.docx | 21KB | Other | download |
MediaObjects/12888_2023_4980_MOESM3_ESM.docx | 18KB | Other | download |
41116_2023_37_Article_IEq115.gif | 1KB | Image | download |
41116_2023_37_Article_IEq116.gif | 1KB | Image | download |
41116_2023_37_Article_IEq117.gif | 1KB | Image | download |
42004_2023_919_Article_IEq16.gif | 1KB | Image | download |
41116_2023_37_Article_IEq118.gif | 1KB | Image | download |
41116_2023_37_Article_IEq119.gif | 1KB | Image | download |
41116_2023_37_Article_IEq120.gif | 1KB | Image | download |
41116_2023_37_Article_IEq121.gif | 1KB | Image | download |
Fig. 1 | 309KB | Image | download |
41116_2023_37_Article_IEq122.gif | 1KB | Image | download |
41116_2023_37_Article_IEq123.gif | 1KB | Image | download |
41116_2023_37_Article_IEq124.gif | 1KB | Image | download |
41116_2023_37_Article_IEq125.gif | 1KB | Image | download |
41116_2023_37_Article_IEq126.gif | 1KB | Image | download |
Fig. 1 | 103KB | Image | download |
41116_2023_37_Article_IEq128.gif | 1KB | Image | download |
41116_2023_37_Article_IEq129.gif | 1KB | Image | download |
41116_2023_37_Article_IEq130.gif | 1KB | Image | download |
Fig. 1 | 675KB | Image | download |
41116_2023_37_Article_IEq132.gif | 1KB | Image | download |
41116_2023_37_Article_IEq133.gif | 1KB | Image | download |
41116_2023_37_Article_IEq134.gif | 1KB | Image | download |
Fig. 2 | 974KB | Image | download |
41116_2023_37_Article_IEq136.gif | 1KB | Image | download |
41116_2023_37_Article_IEq137.gif | 1KB | Image | download |
41116_2023_37_Article_IEq138.gif | 1KB | Image | download |
41116_2023_37_Article_IEq139.gif | 1KB | Image | download |
41116_2023_37_Article_IEq140.gif | 1KB | Image | download |
41116_2023_37_Article_IEq141.gif | 1KB | Image | download |
Fig. 2 | 232KB | Image | download |
41116_2023_37_Article_IEq144.gif | 1KB | Image | download |
【 图 表 】
41116_2023_37_Article_IEq144.gif
Fig. 2
41116_2023_37_Article_IEq141.gif
41116_2023_37_Article_IEq140.gif
41116_2023_37_Article_IEq139.gif
41116_2023_37_Article_IEq138.gif
41116_2023_37_Article_IEq137.gif
41116_2023_37_Article_IEq136.gif
Fig. 2
41116_2023_37_Article_IEq134.gif
41116_2023_37_Article_IEq133.gif
41116_2023_37_Article_IEq132.gif
Fig. 1
41116_2023_37_Article_IEq130.gif
41116_2023_37_Article_IEq129.gif
41116_2023_37_Article_IEq128.gif
Fig. 1
41116_2023_37_Article_IEq126.gif
41116_2023_37_Article_IEq125.gif
41116_2023_37_Article_IEq124.gif
41116_2023_37_Article_IEq123.gif
41116_2023_37_Article_IEq122.gif
Fig. 1
41116_2023_37_Article_IEq121.gif
41116_2023_37_Article_IEq120.gif
41116_2023_37_Article_IEq119.gif
41116_2023_37_Article_IEq118.gif
42004_2023_919_Article_IEq16.gif
41116_2023_37_Article_IEq117.gif
41116_2023_37_Article_IEq116.gif
41116_2023_37_Article_IEq115.gif
41116_2023_37_Article_IEq112.gif
Fig. 3
Fig. 4
Fig. 2
41116_2023_37_Article_IEq109.gif
41116_2023_37_Article_IEq44.gif
41116_2023_37_Article_IEq43.gif
41116_2023_37_Article_IEq42.gif
41116_2023_37_Article_IEq40.gif
Fig. 2
41116_2023_37_Article_IEq39.gif
41116_2023_37_Article_IEq22.gif
Fig. 1
41116_2023_37_Article_IEq3.gif
Fig. 7
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]