期刊论文详细信息
International Journal of Health Geographics
A practical illustration of spatial smoothing methods for disconnected regions with INLA: spatial survey on overweight and obesity in Malaysia
Methodology
Christel Faes1  Khairul Nizam Abdul Maulud2  Maria Safura Mohamad3 
[1] Data Science Institute, I-BioStat, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium;Department of Civil Engineering, Faculty of Engineering & Built Environment, National University of Malaysia, 43600, Bangi, Selangor, Malaysia;Earth Observation Centre, Institute of Climate Change, National University of Malaysia, 43600, Bangi, Selangor, Malaysia;Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland;
关键词: Bayesian hierarchical modelling;    Children;    Disconnected regions;    Disease mapping;    INLA;    Malaysia;    Obesity;    Overweight;   
DOI  :  10.1186/s12942-023-00336-5
 received in 2023-01-25, accepted in 2023-06-01,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundNational prevalence could mask subnational heterogeneity in disease occurrence, and disease mapping is an important tool to illustrate the spatial pattern of disease. However, there is limited information on techniques for the specification of conditional autoregressive models in disease mapping involving disconnected regions. This study explores available techniques for producing district-level prevalence estimates for disconnected regions, using as an example childhood overweight in Malaysia, which consists of the Peninsular and Borneo regions separated by the South China Sea. We used data from Malaysia National Health and Morbidity Survey conducted in 2015. We adopted Bayesian hierarchical modelling using the integrated nested Laplace approximation (INLA) program in R-software to model the spatial distribution of overweight among 6301 children aged 5–17 years across 144 districts located in two disconnected regions. We illustrate different types of spatial models for prevalence mapping across disconnected regions, taking into account the survey design and adjusting for district-level demographic and socioeconomic covariates.ResultsThe spatial model with split random effects and a common intercept has the lowest Deviance and Watanabe Information Criteria. There was evidence of a spatial pattern in the prevalence of childhood overweight across districts. An increasing trend in smoothed prevalence of overweight was observed when moving from the east to the west of the Peninsular and Borneo regions. The proportion of Bumiputera ethnicity in the district had a significant negative association with childhood overweight: the higher the proportion of Bumiputera ethnicity in the district, the lower the prevalence of childhood overweight.ConclusionThis study illustrates different available techniques for mapping prevalence across districts in disconnected regions using survey data. These techniques can be utilized to produce reliable subnational estimates for any areas that comprise of disconnected regions. Through the example, we learned that the best-fit model was the one that considered the separate variations of the individual regions. We discovered that the occurrence of childhood overweight in Malaysia followed a spatial pattern with an east–west gradient trend, and we identified districts with high prevalence of overweight. This information could help policy makers in making informed decisions for targeted public health interventions in high-risk areas.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309070076422ZK.pdf 1828KB PDF download
Fig. 7 320KB Image download
41116_2023_37_Article_IEq3.gif 1KB Image download
Fig. 1 41KB Image download
41116_2023_37_Article_IEq22.gif 1KB Image download
41116_2023_37_Article_IEq39.gif 1KB Image download
Fig. 2 465KB Image download
41116_2023_37_Article_IEq40.gif 1KB Image download
MediaObjects/12888_2023_4902_MOESM1_ESM.docx 27KB Other download
41116_2023_37_Article_IEq42.gif 1KB Image download
41116_2023_37_Article_IEq43.gif 1KB Image download
41116_2023_37_Article_IEq44.gif 1KB Image download
41116_2023_37_Article_IEq109.gif 1KB Image download
Fig. 2 56KB Image download
Fig. 4 169KB Image download
Fig. 3 123KB Image download
41116_2023_37_Article_IEq112.gif 1KB Image download
MediaObjects/12888_2023_4980_MOESM1_ESM.docx 19KB Other download
MediaObjects/12888_2023_4980_MOESM2_ESM.docx 21KB Other download
MediaObjects/12888_2023_4980_MOESM3_ESM.docx 18KB Other download
41116_2023_37_Article_IEq115.gif 1KB Image download
41116_2023_37_Article_IEq116.gif 1KB Image download
41116_2023_37_Article_IEq117.gif 1KB Image download
42004_2023_919_Article_IEq16.gif 1KB Image download
41116_2023_37_Article_IEq118.gif 1KB Image download
41116_2023_37_Article_IEq119.gif 1KB Image download
41116_2023_37_Article_IEq120.gif 1KB Image download
41116_2023_37_Article_IEq121.gif 1KB Image download
Fig. 1 309KB Image download
41116_2023_37_Article_IEq122.gif 1KB Image download
41116_2023_37_Article_IEq123.gif 1KB Image download
41116_2023_37_Article_IEq124.gif 1KB Image download
41116_2023_37_Article_IEq125.gif 1KB Image download
41116_2023_37_Article_IEq126.gif 1KB Image download
Fig. 1 103KB Image download
41116_2023_37_Article_IEq128.gif 1KB Image download
41116_2023_37_Article_IEq129.gif 1KB Image download
41116_2023_37_Article_IEq130.gif 1KB Image download
Fig. 1 675KB Image download
41116_2023_37_Article_IEq132.gif 1KB Image download
41116_2023_37_Article_IEq133.gif 1KB Image download
41116_2023_37_Article_IEq134.gif 1KB Image download
Fig. 2 974KB Image download
41116_2023_37_Article_IEq136.gif 1KB Image download
41116_2023_37_Article_IEq137.gif 1KB Image download
41116_2023_37_Article_IEq138.gif 1KB Image download
41116_2023_37_Article_IEq139.gif 1KB Image download
41116_2023_37_Article_IEq140.gif 1KB Image download
41116_2023_37_Article_IEq141.gif 1KB Image download
Fig. 2 232KB Image download
41116_2023_37_Article_IEq144.gif 1KB Image download
【 图 表 】

41116_2023_37_Article_IEq144.gif

Fig. 2

41116_2023_37_Article_IEq141.gif

41116_2023_37_Article_IEq140.gif

41116_2023_37_Article_IEq139.gif

41116_2023_37_Article_IEq138.gif

41116_2023_37_Article_IEq137.gif

41116_2023_37_Article_IEq136.gif

Fig. 2

41116_2023_37_Article_IEq134.gif

41116_2023_37_Article_IEq133.gif

41116_2023_37_Article_IEq132.gif

Fig. 1

41116_2023_37_Article_IEq130.gif

41116_2023_37_Article_IEq129.gif

41116_2023_37_Article_IEq128.gif

Fig. 1

41116_2023_37_Article_IEq126.gif

41116_2023_37_Article_IEq125.gif

41116_2023_37_Article_IEq124.gif

41116_2023_37_Article_IEq123.gif

41116_2023_37_Article_IEq122.gif

Fig. 1

41116_2023_37_Article_IEq121.gif

41116_2023_37_Article_IEq120.gif

41116_2023_37_Article_IEq119.gif

41116_2023_37_Article_IEq118.gif

42004_2023_919_Article_IEq16.gif

41116_2023_37_Article_IEq117.gif

41116_2023_37_Article_IEq116.gif

41116_2023_37_Article_IEq115.gif

41116_2023_37_Article_IEq112.gif

Fig. 3

Fig. 4

Fig. 2

41116_2023_37_Article_IEq109.gif

41116_2023_37_Article_IEq44.gif

41116_2023_37_Article_IEq43.gif

41116_2023_37_Article_IEq42.gif

41116_2023_37_Article_IEq40.gif

Fig. 2

41116_2023_37_Article_IEq39.gif

41116_2023_37_Article_IEq22.gif

Fig. 1

41116_2023_37_Article_IEq3.gif

Fig. 7

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  文献评价指标  
  下载次数:6次 浏览次数:0次