期刊论文详细信息
Rice
Sparse Phenotyping and Haplotype-Based Models for Genomic Prediction in Rice
Research
Guoyou Ye1  Liyong Cao2  Lijun Meng3  Sang He4  Shanshan Liang5 
[1] CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China;Rice Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines;Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, 310006, Hangzhou, China;Kunpeng Institute of Modern Agriculture at Foshan, 528200, Foshan, China;Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China;CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China;Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China;
关键词: Sparse phenotyping;    Training set;    Linkage disequilibrium;    Haplotype-based model;    Genomic prediction;    Rice;   
DOI  :  10.1186/s12284-023-00643-2
 received in 2022-08-31, accepted in 2023-05-20,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

The multi-environment genomic selection enables plant breeders to select varieties resilient to diverse environments or particularly adapted to specific environments, which holds a great potential to be used in rice breeding. To realize the multi-environment genomic selection, a robust training set with multi-environment phenotypic data is of necessity. Considering the huge potential of genomic prediction enhanced sparse phenotyping on the cost saving of multi-environment trials (MET), the establishment of a multi-environment training set could also benefit from it. Optimizing the genomic prediction methods is also crucial to enhance the multi-environment genomic selection. Using haplotype-based genomic prediction models is able to capture local epistatic effects which could be conserved and accumulated across generations much like additive effects thereby benefitting breeding. However, previous studies often used fixed length haplotypes composed by a few adjacent molecular markers disregarding the linkage disequilibrium (LD) which is of essential role in determining the haplotype length. In our study, based on three rice populations with different sizes and compositions, we investigated the usefulness and effectiveness of multi-environment training sets with varying phenotyping intensities and different haplotype-based genomic prediction models based on LD-derived haplotype blocks for two agronomic traits, i.e., days to heading (DTH) and plant height (PH). Results showed that phenotyping merely 30% records in multi-environment training set is able to provide a comparable prediction accuracy to high phenotyping intensities; the local epistatic effects are much likely existent in DTH; dividing the LD-derived haplotype blocks into small segments with two or three single nucleotide polymorphisms (SNPs) helps to maintain the predictive ability of haplotype-based models in large populations; modelling the covariances between environments improves genomic prediction accuracy. Our study provides means to improve the efficiency of multi-environment genomic selection in rice.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309070071163ZK.pdf 2881KB PDF download
41116_2023_37_Article_IEq31.gif 1KB Image download
Fig. 1 130KB Image download
41116_2023_37_Article_IEq38.gif 1KB Image download
41116_2023_37_Article_IEq42.gif 1KB Image download
41116_2023_37_Article_IEq43.gif 1KB Image download
41116_2023_37_Article_IEq44.gif 1KB Image download
41116_2023_37_Article_IEq45.gif 1KB Image download
41116_2023_37_Article_IEq46.gif 1KB Image download
Fig. 2 122KB Image download
41116_2023_37_Article_IEq48.gif 1KB Image download
41116_2023_37_Article_IEq49.gif 1KB Image download
41116_2023_37_Article_IEq50.gif 1KB Image download
Fig. 1 284KB Image download
41116_2023_37_Article_IEq52.gif 1KB Image download
41116_2023_37_Article_IEq53.gif 1KB Image download
41116_2023_37_Article_IEq54.gif 1KB Image download
41116_2023_37_Article_IEq55.gif 1KB Image download
41116_2023_37_Article_IEq56.gif 1KB Image download
41116_2023_37_Article_IEq57.gif 1KB Image download
41116_2023_37_Article_IEq58.gif 1KB Image download
41116_2023_37_Article_IEq59.gif 1KB Image download
41116_2023_37_Article_IEq60.gif 1KB Image download
41116_2023_37_Article_IEq61.gif 1KB Image download
41116_2023_37_Article_IEq62.gif 1KB Image download
41116_2023_37_Article_IEq63.gif 1KB Image download
41116_2023_37_Article_IEq64.gif 1KB Image download
Fig. 2 473KB Image download
41116_2023_37_Article_IEq67.gif 1KB Image download
Fig. 2 278KB Image download
41116_2023_37_Article_IEq69.gif 1KB Image download
Fig. 2 250KB Image download
MediaObjects/12888_2023_4905_MOESM1_ESM.docx 1745KB Other download
41116_2023_37_Article_IEq72.gif 1KB Image download
41116_2023_37_Article_IEq73.gif 1KB Image download
41116_2023_37_Article_IEq74.gif 1KB Image download
41116_2023_37_Article_IEq75.gif 1KB Image download
41116_2023_37_Article_IEq76.gif 1KB Image download
Fig. 3 432KB Image download
41116_2023_37_Article_IEq78.gif 1KB Image download
41116_2023_37_Article_IEq79.gif 1KB Image download
41116_2023_37_Article_IEq80.gif 1KB Image download
Fig. 4 251KB Image download
41116_2023_37_Article_IEq82.gif 1KB Image download
41116_2023_37_Article_IEq83.gif 1KB Image download
MediaObjects/12888_2023_4809_MOESM1_ESM.docx 27KB Other download
41116_2023_37_Article_IEq85.gif 1KB Image download
41116_2023_37_Article_IEq116.gif 1KB Image download
42004_2023_919_Article_IEq16.gif 1KB Image download
41116_2023_37_Article_IEq118.gif 1KB Image download
41116_2023_37_Article_IEq119.gif 1KB Image download
41116_2023_37_Article_IEq120.gif 1KB Image download
41116_2023_37_Article_IEq122.gif 1KB Image download
41116_2023_37_Article_IEq123.gif 1KB Image download
41116_2023_37_Article_IEq124.gif 1KB Image download
41116_2023_37_Article_IEq125.gif 1KB Image download
41116_2023_37_Article_IEq126.gif 1KB Image download
Fig. 1 103KB Image download
41116_2023_37_Article_IEq128.gif 1KB Image download
41116_2023_37_Article_IEq130.gif 1KB Image download
Fig. 1 675KB Image download
41116_2023_37_Article_IEq132.gif 1KB Image download
41116_2023_37_Article_IEq133.gif 1KB Image download
41116_2023_37_Article_IEq134.gif 1KB Image download
Fig. 2 974KB Image download
41116_2023_37_Article_IEq136.gif 1KB Image download
41116_2023_37_Article_IEq137.gif 1KB Image download
41116_2023_37_Article_IEq138.gif 1KB Image download
41116_2023_37_Article_IEq139.gif 1KB Image download
41116_2023_37_Article_IEq140.gif 1KB Image download
41116_2023_37_Article_IEq141.gif 1KB Image download
Fig. 2 232KB Image download
41116_2023_37_Article_IEq142.gif 1KB Image download
41116_2023_37_Article_IEq143.gif 1KB Image download
41116_2023_37_Article_IEq144.gif 1KB Image download
Fig. 1 132KB Image download
41116_2023_37_Article_IEq147.gif 1KB Image download
41116_2023_37_Article_IEq148.gif 1KB Image download
41116_2023_37_Article_IEq149.gif 1KB Image download
41116_2023_37_Article_IEq150.gif 1KB Image download
41116_2023_37_Article_IEq151.gif 1KB Image download
41116_2023_37_Article_IEq152.gif 1KB Image download
41116_2023_37_Article_IEq153.gif 1KB Image download
41116_2023_37_Article_IEq243.gif 1KB Image download
【 图 表 】

41116_2023_37_Article_IEq243.gif

41116_2023_37_Article_IEq153.gif

41116_2023_37_Article_IEq152.gif

41116_2023_37_Article_IEq151.gif

41116_2023_37_Article_IEq150.gif

41116_2023_37_Article_IEq149.gif

41116_2023_37_Article_IEq148.gif

41116_2023_37_Article_IEq147.gif

Fig. 1

41116_2023_37_Article_IEq144.gif

41116_2023_37_Article_IEq143.gif

41116_2023_37_Article_IEq142.gif

Fig. 2

41116_2023_37_Article_IEq141.gif

41116_2023_37_Article_IEq140.gif

41116_2023_37_Article_IEq139.gif

41116_2023_37_Article_IEq138.gif

41116_2023_37_Article_IEq137.gif

41116_2023_37_Article_IEq136.gif

Fig. 2

41116_2023_37_Article_IEq134.gif

41116_2023_37_Article_IEq133.gif

41116_2023_37_Article_IEq132.gif

Fig. 1

41116_2023_37_Article_IEq130.gif

41116_2023_37_Article_IEq128.gif

Fig. 1

41116_2023_37_Article_IEq126.gif

41116_2023_37_Article_IEq125.gif

41116_2023_37_Article_IEq124.gif

41116_2023_37_Article_IEq123.gif

41116_2023_37_Article_IEq122.gif

41116_2023_37_Article_IEq120.gif

41116_2023_37_Article_IEq119.gif

41116_2023_37_Article_IEq118.gif

42004_2023_919_Article_IEq16.gif

41116_2023_37_Article_IEq116.gif

41116_2023_37_Article_IEq85.gif

41116_2023_37_Article_IEq83.gif

41116_2023_37_Article_IEq82.gif

Fig. 4

41116_2023_37_Article_IEq80.gif

41116_2023_37_Article_IEq79.gif

41116_2023_37_Article_IEq78.gif

Fig. 3

41116_2023_37_Article_IEq76.gif

41116_2023_37_Article_IEq75.gif

41116_2023_37_Article_IEq74.gif

41116_2023_37_Article_IEq73.gif

41116_2023_37_Article_IEq72.gif

Fig. 2

41116_2023_37_Article_IEq69.gif

Fig. 2

41116_2023_37_Article_IEq67.gif

Fig. 2

41116_2023_37_Article_IEq64.gif

41116_2023_37_Article_IEq63.gif

41116_2023_37_Article_IEq62.gif

41116_2023_37_Article_IEq61.gif

41116_2023_37_Article_IEq60.gif

41116_2023_37_Article_IEq59.gif

41116_2023_37_Article_IEq58.gif

41116_2023_37_Article_IEq57.gif

41116_2023_37_Article_IEq56.gif

41116_2023_37_Article_IEq55.gif

41116_2023_37_Article_IEq54.gif

41116_2023_37_Article_IEq53.gif

41116_2023_37_Article_IEq52.gif

Fig. 1

41116_2023_37_Article_IEq50.gif

41116_2023_37_Article_IEq49.gif

41116_2023_37_Article_IEq48.gif

Fig. 2

41116_2023_37_Article_IEq46.gif

41116_2023_37_Article_IEq45.gif

41116_2023_37_Article_IEq44.gif

41116_2023_37_Article_IEq43.gif

41116_2023_37_Article_IEq42.gif

41116_2023_37_Article_IEq38.gif

Fig. 1

41116_2023_37_Article_IEq31.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:10次 浏览次数:4次