| Rice | |
| Sparse Phenotyping and Haplotype-Based Models for Genomic Prediction in Rice | |
| Research | |
| Guoyou Ye1  Liyong Cao2  Lijun Meng3  Sang He4  Shanshan Liang5  | |
| [1] CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China;Rice Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines;Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, 310006, Hangzhou, China;Kunpeng Institute of Modern Agriculture at Foshan, 528200, Foshan, China;Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China;CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China;Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China; | |
| 关键词: Sparse phenotyping; Training set; Linkage disequilibrium; Haplotype-based model; Genomic prediction; Rice; | |
| DOI : 10.1186/s12284-023-00643-2 | |
| received in 2022-08-31, accepted in 2023-05-20, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
The multi-environment genomic selection enables plant breeders to select varieties resilient to diverse environments or particularly adapted to specific environments, which holds a great potential to be used in rice breeding. To realize the multi-environment genomic selection, a robust training set with multi-environment phenotypic data is of necessity. Considering the huge potential of genomic prediction enhanced sparse phenotyping on the cost saving of multi-environment trials (MET), the establishment of a multi-environment training set could also benefit from it. Optimizing the genomic prediction methods is also crucial to enhance the multi-environment genomic selection. Using haplotype-based genomic prediction models is able to capture local epistatic effects which could be conserved and accumulated across generations much like additive effects thereby benefitting breeding. However, previous studies often used fixed length haplotypes composed by a few adjacent molecular markers disregarding the linkage disequilibrium (LD) which is of essential role in determining the haplotype length. In our study, based on three rice populations with different sizes and compositions, we investigated the usefulness and effectiveness of multi-environment training sets with varying phenotyping intensities and different haplotype-based genomic prediction models based on LD-derived haplotype blocks for two agronomic traits, i.e., days to heading (DTH) and plant height (PH). Results showed that phenotyping merely 30% records in multi-environment training set is able to provide a comparable prediction accuracy to high phenotyping intensities; the local epistatic effects are much likely existent in DTH; dividing the LD-derived haplotype blocks into small segments with two or three single nucleotide polymorphisms (SNPs) helps to maintain the predictive ability of haplotype-based models in large populations; modelling the covariances between environments improves genomic prediction accuracy. Our study provides means to improve the efficiency of multi-environment genomic selection in rice.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202309070071163ZK.pdf | 2881KB | ||
| 41116_2023_37_Article_IEq31.gif | 1KB | Image | |
| Fig. 1 | 130KB | Image | |
| 41116_2023_37_Article_IEq38.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq42.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq43.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq44.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq45.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq46.gif | 1KB | Image | |
| Fig. 2 | 122KB | Image | |
| 41116_2023_37_Article_IEq48.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq49.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq50.gif | 1KB | Image | |
| Fig. 1 | 284KB | Image | |
| 41116_2023_37_Article_IEq52.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq53.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq54.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq55.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq56.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq57.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq58.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq59.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq60.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq61.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq62.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq63.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq64.gif | 1KB | Image | |
| Fig. 2 | 473KB | Image | |
| 41116_2023_37_Article_IEq67.gif | 1KB | Image | |
| Fig. 2 | 278KB | Image | |
| 41116_2023_37_Article_IEq69.gif | 1KB | Image | |
| Fig. 2 | 250KB | Image | |
| MediaObjects/12888_2023_4905_MOESM1_ESM.docx | 1745KB | Other | |
| 41116_2023_37_Article_IEq72.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq73.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq74.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq75.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq76.gif | 1KB | Image | |
| Fig. 3 | 432KB | Image | |
| 41116_2023_37_Article_IEq78.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq79.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq80.gif | 1KB | Image | |
| Fig. 4 | 251KB | Image | |
| 41116_2023_37_Article_IEq82.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq83.gif | 1KB | Image | |
| MediaObjects/12888_2023_4809_MOESM1_ESM.docx | 27KB | Other | |
| 41116_2023_37_Article_IEq85.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq116.gif | 1KB | Image | |
| 42004_2023_919_Article_IEq16.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq118.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq119.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq120.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq122.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq123.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq124.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq125.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq126.gif | 1KB | Image | |
| Fig. 1 | 103KB | Image | |
| 41116_2023_37_Article_IEq128.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq130.gif | 1KB | Image | |
| Fig. 1 | 675KB | Image | |
| 41116_2023_37_Article_IEq132.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq133.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq134.gif | 1KB | Image | |
| Fig. 2 | 974KB | Image | |
| 41116_2023_37_Article_IEq136.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq137.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq138.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq139.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq140.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq141.gif | 1KB | Image | |
| Fig. 2 | 232KB | Image | |
| 41116_2023_37_Article_IEq142.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq143.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq144.gif | 1KB | Image | |
| Fig. 1 | 132KB | Image | |
| 41116_2023_37_Article_IEq147.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq148.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq149.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq150.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq151.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq152.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq153.gif | 1KB | Image | |
| 41116_2023_37_Article_IEq243.gif | 1KB | Image |
【 图 表 】
41116_2023_37_Article_IEq243.gif
41116_2023_37_Article_IEq153.gif
41116_2023_37_Article_IEq152.gif
41116_2023_37_Article_IEq151.gif
41116_2023_37_Article_IEq150.gif
41116_2023_37_Article_IEq149.gif
41116_2023_37_Article_IEq148.gif
41116_2023_37_Article_IEq147.gif
Fig. 1
41116_2023_37_Article_IEq144.gif
41116_2023_37_Article_IEq143.gif
41116_2023_37_Article_IEq142.gif
Fig. 2
41116_2023_37_Article_IEq141.gif
41116_2023_37_Article_IEq140.gif
41116_2023_37_Article_IEq139.gif
41116_2023_37_Article_IEq138.gif
41116_2023_37_Article_IEq137.gif
41116_2023_37_Article_IEq136.gif
Fig. 2
41116_2023_37_Article_IEq134.gif
41116_2023_37_Article_IEq133.gif
41116_2023_37_Article_IEq132.gif
Fig. 1
41116_2023_37_Article_IEq130.gif
41116_2023_37_Article_IEq128.gif
Fig. 1
41116_2023_37_Article_IEq126.gif
41116_2023_37_Article_IEq125.gif
41116_2023_37_Article_IEq124.gif
41116_2023_37_Article_IEq123.gif
41116_2023_37_Article_IEq122.gif
41116_2023_37_Article_IEq120.gif
41116_2023_37_Article_IEq119.gif
41116_2023_37_Article_IEq118.gif
42004_2023_919_Article_IEq16.gif
41116_2023_37_Article_IEq116.gif
41116_2023_37_Article_IEq85.gif
41116_2023_37_Article_IEq83.gif
41116_2023_37_Article_IEq82.gif
Fig. 4
41116_2023_37_Article_IEq80.gif
41116_2023_37_Article_IEq79.gif
41116_2023_37_Article_IEq78.gif
Fig. 3
41116_2023_37_Article_IEq76.gif
41116_2023_37_Article_IEq75.gif
41116_2023_37_Article_IEq74.gif
41116_2023_37_Article_IEq73.gif
41116_2023_37_Article_IEq72.gif
Fig. 2
41116_2023_37_Article_IEq69.gif
Fig. 2
41116_2023_37_Article_IEq67.gif
Fig. 2
41116_2023_37_Article_IEq64.gif
41116_2023_37_Article_IEq63.gif
41116_2023_37_Article_IEq62.gif
41116_2023_37_Article_IEq61.gif
41116_2023_37_Article_IEq60.gif
41116_2023_37_Article_IEq59.gif
41116_2023_37_Article_IEq58.gif
41116_2023_37_Article_IEq57.gif
41116_2023_37_Article_IEq56.gif
41116_2023_37_Article_IEq55.gif
41116_2023_37_Article_IEq54.gif
41116_2023_37_Article_IEq53.gif
41116_2023_37_Article_IEq52.gif
Fig. 1
41116_2023_37_Article_IEq50.gif
41116_2023_37_Article_IEq49.gif
41116_2023_37_Article_IEq48.gif
Fig. 2
41116_2023_37_Article_IEq46.gif
41116_2023_37_Article_IEq45.gif
41116_2023_37_Article_IEq44.gif
41116_2023_37_Article_IEq43.gif
41116_2023_37_Article_IEq42.gif
41116_2023_37_Article_IEq38.gif
Fig. 1
41116_2023_37_Article_IEq31.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
PDF