Eye and Vision | |
Artificial intelligence-based refractive error prediction and EVO-implantable collamer lens power calculation for myopia correction | |
Research | |
Yang Shen1  Yilin Xu1  Xiaoying Wang1  Mingrui Cheng1  Boliang Li1  Xun Chen1  Yinjie Jiang1  Lingling Niu1  Xingtao Zhou1  Yadi Lei1  Chongyang Wang2  | |
[1] Eye Ear Nose and Throat Hospital, Fudan University, No. 19 BaoQing Road, XuHui District, 200031, Shanghai, China;National Health Commission Key Lab of Myopia, Fudan University, Shanghai, China;Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China;Research and Development Department, Shanghai MediWorks Precision Instruments Company Limited, Shanghai, China; | |
关键词: Artificial intelligence; Machine learning; Refractive error; Myopia; Implantable collamer lens; Toric implantable collamer lens; Lens power calculation; | |
DOI : 10.1186/s40662-023-00338-1 | |
received in 2022-09-13, accepted in 2023-03-16, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
BackgroundImplantable collamer lens (ICL) has been widely accepted for its excellent visual outcomes for myopia correction. It is a new challenge in phakic IOL power calculation, especially for those with low and moderate myopia. This study aimed to establish a novel stacking machine learning (ML) model for predicting postoperative refraction errors and calculating EVO-ICL lens power.MethodsWe enrolled 2767 eyes of 1678 patients (age: 27.5 ± 6.33 years, 18–54 years) who underwent non-toric (NT)-ICL or toric-ICL (TICL) implantation during 2014 to 2021. The postoperative spherical equivalent (SE) and sphere were predicted using stacking ML models [support vector regression (SVR), LASSO, random forest, and XGBoost] and training based on ocular dimensional parameters from NT-ICL and TICL cases, respectively. The accuracy of the stacking ML models was compared with that of the modified vergence formula (MVF) based on the mean absolute error (MAE), median absolute error (MedAE), and percentages of eyes within ± 0.25, ± 0.50, and ± 0.75 diopters (D) and Bland-Altman analyses. In addition, the recommended spheric lens power was calculated with 0.25 D intervals and targeting emmetropia.ResultsAfter NT-ICL implantation, the random forest model demonstrated the lowest MAE (0.339 D) for predicting SE. Contrarily, the SVR model showed the lowest MAE (0.386 D) for predicting the sphere. After TICL implantation, the XGBoost model showed the lowest MAE for predicting both SE (0.325 D) and sphere (0.308 D). Compared with MVF, ML models had numerically lower values of standard deviation, MAE, and MedAE and comparable percentages of eyes within ± 0.25 D, ± 0.50 D, and ± 0.75 D prediction errors. The difference between MVF and ML models was larger in eyes with low-to-moderate myopia (preoperative SE > − 6.00 D). Our final optimal stacking ML models showed strong agreement between the predictive values of MVF by Bland-Altman plots.ConclusionWith various ocular dimensional parameters, ML models demonstrate comparable accuracy than existing MVF models and potential advantages in low-to-moderate myopia, and thus provide a novel nomogram for postoperative refractive error prediction and lens power calculation.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202308159697928ZK.pdf | 3358KB | download | |
41116_2023_36_Article_IEq87.gif | 1KB | Image | download |
41116_2023_36_Article_IEq129.gif | 1KB | Image | download |
41116_2023_36_Article_IEq171.gif | 1KB | Image | download |
Fig. 3 | 993KB | Image | download |
40517_2023_256_Article_IEq256.gif | 1KB | Image | download |
41116_2023_36_Article_IEq351.gif | 1KB | Image | download |
Fig. 3 | 30KB | Image | download |
Fig. 4 | 104KB | Image | download |
Fig. 3 | 81KB | Image | download |
41116_2023_36_Article_IEq644.gif | 1KB | Image | download |
40517_2023_258_Article_IEq25.gif | 1KB | Image | download |
【 图 表 】
40517_2023_258_Article_IEq25.gif
41116_2023_36_Article_IEq644.gif
Fig. 3
Fig. 4
Fig. 3
41116_2023_36_Article_IEq351.gif
40517_2023_256_Article_IEq256.gif
Fig. 3
41116_2023_36_Article_IEq171.gif
41116_2023_36_Article_IEq129.gif
41116_2023_36_Article_IEq87.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]