期刊论文详细信息
BMC Medical Imaging
Classification of chest X-ray images by incorporation of medical domain knowledge into operation branch networks
Research
Shinobu Kumagai1  Kenya Kusunose2  Masataka Sata2  Kenshiro Shiraishi3  Takumasa Tsuji4  Jun’ichi Kotoku5  Yukina Hirata6 
[1] Central Radiology Division, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-Ku, 173-8606, Tokyo, Japan;Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1, Kuramoto, Tokushima, Japan;Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-Ku, 173-8605, Tokyo, Japan;Graduate School of Medical Care and Technology, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, 173-8605, Tokyo, Japan;Graduate School of Medical Care and Technology, Teikyo University, 2-11-1 Kaga, Itabashi-Ku, 173-8605, Tokyo, Japan;Central Radiology Division, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-Ku, 173-8606, Tokyo, Japan;Ultrasound Examination Center, Tokushima University Hospital, 2-50-1, Kuramoto, Tokushima, Japan;
关键词: Attention mechanism;    Chest X-ray images;    Convolutional neural networks;    Deep learning;    Explainable AI;   
DOI  :  10.1186/s12880-023-01019-0
 received in 2022-08-23, accepted in 2023-05-02,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThis study was conducted to alleviate a common difficulty in chest X-ray image diagnosis: The attention region in a convolutional neural network (CNN) does not often match the doctor’s point of focus. The method presented herein, which guides the area of attention in CNN to a medically plausible region, can thereby improve diagnostic capabilities.MethodsThe model is based on an attention branch network, which has excellent interpretability of the classification model. This model has an additional new operation branch that guides the attention region to the lung field and heart in chest X-ray images. We also used three chest X-ray image datasets (Teikyo, Tokushima, and ChestX-ray14) to evaluate the CNN attention area of interest in these fields. Additionally, after devising a quantitative method of evaluating improvement of a CNN’s region of interest, we applied it to evaluation of the proposed model.ResultsOperation branch networks maintain or improve the area under the curve to a greater degree than conventional CNNs do. Furthermore, the network better emphasizes reasonable anatomical parts in chest X-ray images.ConclusionsThe proposed network better emphasizes the reasonable anatomical parts in chest X-ray images. This method can enhance capabilities for image interpretation based on judgment.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202308159220592ZK.pdf 7148KB PDF download
41116_2023_36_Article_IEq234.gif 1KB Image download
41116_2023_36_Article_IEq246.gif 1KB Image download
Fig. 4 639KB Image download
Fig. 1 50KB Image download
Fig. 1 50KB Image download
41116_2023_36_Article_IEq265.gif 1KB Image download
41116_2023_36_Article_IEq291.gif 1KB Image download
Fig. 1 218KB Image download
41116_2023_36_Article_IEq316.gif 1KB Image download
Fig. 2 110KB Image download
41116_2023_36_Article_IEq340.gif 1KB Image download
41116_2023_36_Article_IEq347.gif 1KB Image download
MediaObjects/12888_2023_4883_MOESM1_ESM.docx 17KB Other download
Fig. 3 70KB Image download
41116_2023_36_Article_IEq350.gif 1KB Image download
41116_2023_36_Article_IEq351.gif 1KB Image download
41116_2023_36_Article_IEq352.gif 1KB Image download
41116_2023_36_Article_IEq353.gif 1KB Image download
41116_2023_36_Article_IEq354.gif 1KB Image download
Fig. 1 30KB Image download
Fig. 2 29KB Image download
Fig. 3 30KB Image download
41116_2023_36_Article_IEq358.gif 1KB Image download
MediaObjects/12888_2023_4767_MOESM1_ESM.pdf 1353KB PDF download
41116_2023_36_Article_IEq359.gif 1KB Image download
41116_2023_36_Article_IEq360.gif 1KB Image download
41116_2023_36_Article_IEq361.gif 1KB Image download
41116_2023_36_Article_IEq362.gif 1KB Image download
MediaObjects/12888_2023_4867_MOESM1_ESM.docx 16KB Other download
41116_2023_36_Article_IEq364.gif 1KB Image download
41116_2023_36_Article_IEq365.gif 1KB Image download
41116_2023_36_Article_IEq366.gif 1KB Image download
41116_2023_36_Article_IEq367.gif 1KB Image download
41116_2023_36_Article_IEq368.gif 1KB Image download
41116_2023_36_Article_IEq369.gif 1KB Image download
41116_2023_36_Article_IEq370.gif 1KB Image download
【 图 表 】

41116_2023_36_Article_IEq370.gif

41116_2023_36_Article_IEq369.gif

41116_2023_36_Article_IEq368.gif

41116_2023_36_Article_IEq367.gif

41116_2023_36_Article_IEq366.gif

41116_2023_36_Article_IEq365.gif

41116_2023_36_Article_IEq364.gif

41116_2023_36_Article_IEq362.gif

41116_2023_36_Article_IEq361.gif

41116_2023_36_Article_IEq360.gif

41116_2023_36_Article_IEq359.gif

41116_2023_36_Article_IEq358.gif

Fig. 3

Fig. 2

Fig. 1

41116_2023_36_Article_IEq354.gif

41116_2023_36_Article_IEq353.gif

41116_2023_36_Article_IEq352.gif

41116_2023_36_Article_IEq351.gif

41116_2023_36_Article_IEq350.gif

Fig. 3

41116_2023_36_Article_IEq347.gif

41116_2023_36_Article_IEq340.gif

Fig. 2

41116_2023_36_Article_IEq316.gif

Fig. 1

41116_2023_36_Article_IEq291.gif

41116_2023_36_Article_IEq265.gif

Fig. 1

Fig. 1

Fig. 4

41116_2023_36_Article_IEq246.gif

41116_2023_36_Article_IEq234.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  文献评价指标  
  下载次数:7次 浏览次数:0次