期刊论文详细信息
Progress in Earth and Planetary Science
Ground motion hazard of the China–Pakistan Economic Corridor (CPEC) routes in Pakistan
Research Article
Muhammad Waseem1  Hammad Tariq Janjuhah2  George Kontakiotis3  Waqas Ahmed4  Qasim Ur Rehman5  Ihtisham Islam6 
[1] Department of Civil Engineering, University of Engineering and Technology, 25120, Peshawar, Pakistan;Department of Geology, Shaheed Benazir Bhutto University Sheringal, 18000, Upper Dir, Khyber Pakhtunkhwa, Pakistan;Department of Historical Geology-Paleontology, Faculty of Geology and Geoenvironment, School of Earth Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15784, Athens, Greece;National Centre of Excellence in Geology, University of Peshawar, 25120, Peshawar, Pakistan;National Centre of Excellence in Geology, University of Peshawar, 25120, Peshawar, Pakistan;Department of Earth Sciences, University of Haripur, 22610, Haripur, Pakistan;National Centre of Excellence in Geology, University of Peshawar, 25120, Peshawar, Pakistan;Department of Geology, Shaheed Benazir Bhutto University Sheringal, 18000, Upper Dir, Khyber Pakhtunkhwa, Pakistan;
关键词: Probabilistic seismic hazard;    Seismic design;    Areal source model;    PGA and SA;    CPEC route;   
DOI  :  10.1186/s40645-023-00559-x
 received in 2022-05-24, accepted in 2023-05-05,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Pakistan has seen a burst of infrastructure development recently due to the increased connection between Asia and East Europe. The China–Pakistan Economic Corridor is a project between China and Pakistan aimed to improve the regional infrastructure that would ultimately enhance the connection between Asia and Eastern Europe. However, the active tectonics of Pakistan could put this infrastructure at risk if it is not built to the highest hazard prevention standard. This study reports the ground motion hazard by using the probabilistic seismic hazard assessment approach and the areal seismic source model. The seismic hazard maps of the China–Pakistan Economic Corridor in Pakistan are derived using the Cornell–McGuire (1968–1976) approach, which takes into account all earthquakes (25AD-2020) that occurred in Pakistan and nearby regions, the newest ground motion prediction equations, and an updated seismotectonic source model of Pakistan. The final ground motion intensities are attained as peak ground acceleration and 5% damped spectral acceleration at T = 0.2 s and 1.0 s for 475- and 2475-year return periods (estimated for bedrock site conditions). The results are displayed as color-coded maps that represent the amplitude deviation of ground motion. From the spatial evaluation of the maps, a peak ground acceleration value of 0.40–0.52 g for the 475-year return period and a spectral acceleration (0.2 s) value of 1.66–2.13 g for 2475-year return period are mostly observed on the northern and western routes. The central and eastern routes are mostly characterized by a peak ground acceleration value of 0.22–0.24 g for the 475-year return period and a spectral acceleration (0.2 s) value of 0.95–1.13 g due to diffused seismicity and lower number of faults in this region. The ground motion intensity values obtained in this study can be utilized for the seismic design of all kinds of infrastructure and bridges along the CPEC routes in accordance with the Building Code of Pakistan, the International Building codes, and the load and resistance factor design codes published by American Association of the State Highway and Transportation Officials.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202308155886550ZK.pdf 14316KB PDF download
40517_2023_256_Article_IEq106.gif 1KB Image download
MediaObjects/41408_2023_851_MOESM4_ESM.pdf 2778KB PDF download
Fig. 27 51KB Image download
Fig. 35 51KB Image download
41116_2023_36_Article_IEq22.gif 1KB Image download
41116_2023_36_Article_IEq25.gif 1KB Image download
41116_2023_36_Article_IEq43.gif 1KB Image download
MediaObjects/13690_2023_1081_MOESM3_ESM.xlsx 5842KB Other download
41116_2023_36_Article_IEq78.gif 1KB Image download
Fig. 4 111KB Image download
41116_2023_36_Article_IEq103.gif 1KB Image download
41116_2023_36_Article_IEq114.gif 1KB Image download
41116_2023_36_Article_IEq130.gif 1KB Image download
40517_2023_256_Article_IEq71.gif 1KB Image download
Fig. 2 157KB Image download
Fig. 7 177KB Image download
MediaObjects/12888_2023_4688_MOESM1_ESM.docx 73KB Other download
Fig. 8 136KB Image download
41116_2023_36_Article_IEq142.gif 1KB Image download
41116_2023_36_Article_IEq143.gif 1KB Image download
Fig. 1 213KB Image download
41116_2023_36_Article_IEq145.gif 1KB Image download
Fig. 1 463KB Image download
41116_2023_36_Article_IEq146.gif 1KB Image download
MediaObjects/12888_2023_4713_MOESM1_ESM.pdf 51KB PDF download
41116_2023_36_Article_IEq148.gif 1KB Image download
40517_2023_256_Article_IEq264.gif 1KB Image download
【 图 表 】

40517_2023_256_Article_IEq264.gif

41116_2023_36_Article_IEq148.gif

41116_2023_36_Article_IEq146.gif

Fig. 1

41116_2023_36_Article_IEq145.gif

Fig. 1

41116_2023_36_Article_IEq143.gif

41116_2023_36_Article_IEq142.gif

Fig. 8

Fig. 7

Fig. 2

40517_2023_256_Article_IEq71.gif

41116_2023_36_Article_IEq130.gif

41116_2023_36_Article_IEq114.gif

41116_2023_36_Article_IEq103.gif

Fig. 4

41116_2023_36_Article_IEq78.gif

41116_2023_36_Article_IEq43.gif

41116_2023_36_Article_IEq25.gif

41116_2023_36_Article_IEq22.gif

Fig. 35

Fig. 27

40517_2023_256_Article_IEq106.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  文献评价指标  
  下载次数:0次 浏览次数:3次