期刊论文详细信息
BMC Bioinformatics
A neural network model to screen feature genes for pancreatic cancer
Research
Jing Huang1  Yiming Wu1  Haoran Zhang1  Yuting Zhou2 
[1] Department of Gastroenterology, First Hospital of Jiaxing, 314001, Jiaxing, Zhejiang, China;Department of Respiratory, The 904Th Hospital of Joint Logistic Support Force of PLA, Affiliated Hospital of Jiangnan University, 214000, Wuxi, Jiangsu, China;
关键词: Pancreatic cancer;    Neural network model;    Biomarkers;    Gene expression profiling;    Random forest;   
DOI  :  10.1186/s12859-023-05322-z
 received in 2022-12-09, accepted in 2023-05-05,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

All the time, pancreatic cancer is a problem worldwide because of its high degree of malignancy and increased mortality. Neural network model analysis is an efficient and accurate machine learning method that can quickly and accurately predict disease feature genes. The aim of our research was to build a neural network model that would help screen out feature genes for pancreatic cancer diagnosis and prediction of prognosis. Our study confirmed that the neural network model is a reliable way to predict feature genes of pancreatic cancer, and immune cells infiltrating play an essential role in the development of pancreatic cancer, especially neutrophils. ANO1, AHNAK2, and ADAM9 were eventually identified as feature genes of pancreatic cancer, helping to diagnose and predict prognosis. Neural network model analysis provides us with a new idea for finding new intervention targets for pancreatic cancer.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202308153431511ZK.pdf 6490KB PDF download
41116_2023_36_Article_IEq213.gif 1KB Image download
41116_2023_36_Article_IEq216.gif 1KB Image download
41116_2023_36_Article_IEq220.gif 1KB Image download
41116_2023_36_Article_IEq225.gif 1KB Image download
41116_2023_36_Article_IEq231.gif 1KB Image download
41116_2023_36_Article_IEq238.gif 1KB Image download
41116_2023_36_Article_IEq242.gif 1KB Image download
41116_2023_36_Article_IEq247.gif 1KB Image download
41116_2023_36_Article_IEq255.gif 1KB Image download
41116_2023_36_Article_IEq260.gif 1KB Image download
41116_2023_36_Article_IEq267.gif 1KB Image download
【 图 表 】

41116_2023_36_Article_IEq267.gif

41116_2023_36_Article_IEq260.gif

41116_2023_36_Article_IEq255.gif

41116_2023_36_Article_IEq247.gif

41116_2023_36_Article_IEq242.gif

41116_2023_36_Article_IEq238.gif

41116_2023_36_Article_IEq231.gif

41116_2023_36_Article_IEq225.gif

41116_2023_36_Article_IEq220.gif

41116_2023_36_Article_IEq216.gif

41116_2023_36_Article_IEq213.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  文献评价指标  
  下载次数:7次 浏览次数:7次