期刊论文详细信息
EURASIP Journal on Image and Video Processing
Learning a crowd-powered perceptual distance metric for facial blendshapes
Research
Zeynep Cipiloglu Yildiz1 
[1] Department of Computer Engineering, Manisa Celal Bayar University, Manisa, Turkey;
关键词: Blendshapes;    Animation;    Facial expressions;    Visual perception;    Crowdsourcing;    Metric learning;   
DOI  :  10.1186/s13640-023-00609-w
 received in 2023-01-26, accepted in 2023-05-09,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

It is known that purely geometric distance metrics cannot reflect the human perception of facial expressions. A novel perceptually based distance metric designed for 3D facial blendshape models is proposed in this paper. To develop this metric, comparative evaluations of facial expressions were collected from a crowdsourcing experiment. Then, the weights of a distance metric, based on descriptive features of the models, were optimized to match the results with crowdsourced data, through a metric learning process. The method incorporates perceptual properties such as curvature and visual saliency. A formal analysis of the results proves the high correlation between the metric output and human perception. The effectiveness and success of the proposed metric were also compared to other distance alternatives. The proposed metric will enable intelligent processing of 3D facial blendshapes data in several ways. It will be possible to generate perceptually valid clustering and visualization of 3D facial blendshapes. It will help reduce storage and computational requirements by removing redundant expressions that are perceptually identical from the overall dataset. It can also be used to assist novice animators while creating plausible and expressive facial animations.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202308150644721ZK.pdf 2602KB PDF download
MediaObjects/12888_2023_4761_MOESM1_ESM.docx 55KB Other download
40517_2023_258_Article_IEq46.gif 1KB Image download
41116_2023_36_Article_IEq718.gif 1KB Image download
40517_2023_258_Article_IEq51.gif 1KB Image download
Fig. 6 931KB Image download
Fig. 1 169KB Image download
41116_2023_36_Article_IEq733.gif 1KB Image download
41116_2023_36_Article_IEq744.gif 1KB Image download
41116_2023_36_Article_IEq747.gif 1KB Image download
41116_2023_36_Article_IEq753.gif 1KB Image download
41116_2023_36_Article_IEq765.gif 1KB Image download
Fig. 2 72KB Image download
MediaObjects/12888_2023_4860_MOESM1_ESM.xlsx 164KB Other download
41116_2023_36_Article_IEq781.gif 1KB Image download
41116_2023_36_Article_IEq789.gif 1KB Image download
41116_2023_36_Article_IEq795.gif 1KB Image download
41116_2023_36_Article_IEq803.gif 1KB Image download
41116_2023_36_Article_IEq805.gif 1KB Image download
40517_2023_258_Article_IEq102.gif 1KB Image download
41116_2023_36_Article_IEq809.gif 1KB Image download
41116_2023_36_Article_IEq811.gif 1KB Image download
41116_2023_36_Article_IEq813.gif 1KB Image download
41116_2023_36_Article_IEq815.gif 1KB Image download
41116_2023_36_Article_IEq816.gif 1KB Image download
41116_2023_36_Article_IEq817.gif 1KB Image download
41116_2023_36_Article_IEq818.gif 1KB Image download
41116_2023_36_Article_IEq115.gif 1KB Image download
41116_2023_36_Article_IEq116.gif 1KB Image download
Fig. 2 97KB Image download
41116_2023_36_Article_IEq117.gif 1KB Image download
40517_2023_256_Article_IEq4.gif 1KB Image download
40517_2023_256_Article_IEq5.gif 1KB Image download
Fig. 5 204KB Image download
40517_2023_256_Article_IEq11.gif 1KB Image download
Fig. 7 383KB Image download
MediaObjects/12888_2023_4796_MOESM1_ESM.docx 14KB Other download
Fig. 6 158KB Image download
MediaObjects/12888_2023_4796_MOESM2_ESM.docx 15KB Other download
Fig. 8 794KB Image download
40517_2023_256_Article_IEq14.gif 1KB Image download
Fig. 1 136KB Image download
MediaObjects/40249_2023_1063_MOESM6_ESM.jpg 748KB Other download
Fig. 1 172KB Image download
40517_2023_258_Article_IEq113.gif 1KB Image download
40517_2023_258_Article_IEq114.gif 1KB Image download
40517_2023_258_Article_IEq115.gif 1KB Image download
MediaObjects/12888_2023_4818_MOESM1_ESM.docx 52KB Other download
Fig. 1 92KB Image download
MediaObjects/12888_2023_4818_MOESM2_ESM.docx 36KB Other download
40517_2023_258_Article_IEq119.gif 1KB Image download
MediaObjects/12888_2023_4818_MOESM3_ESM.pdf 985KB PDF download
40517_2023_258_Article_IEq121.gif 1KB Image download
40517_2023_258_Article_IEq122.gif 1KB Image download
【 图 表 】

40517_2023_258_Article_IEq122.gif

40517_2023_258_Article_IEq121.gif

40517_2023_258_Article_IEq119.gif

Fig. 1

40517_2023_258_Article_IEq115.gif

40517_2023_258_Article_IEq114.gif

40517_2023_258_Article_IEq113.gif

Fig. 1

Fig. 1

40517_2023_256_Article_IEq14.gif

Fig. 8

Fig. 6

Fig. 7

40517_2023_256_Article_IEq11.gif

Fig. 5

40517_2023_256_Article_IEq5.gif

40517_2023_256_Article_IEq4.gif

41116_2023_36_Article_IEq117.gif

Fig. 2

41116_2023_36_Article_IEq116.gif

41116_2023_36_Article_IEq115.gif

41116_2023_36_Article_IEq818.gif

41116_2023_36_Article_IEq817.gif

41116_2023_36_Article_IEq816.gif

41116_2023_36_Article_IEq815.gif

41116_2023_36_Article_IEq813.gif

41116_2023_36_Article_IEq811.gif

41116_2023_36_Article_IEq809.gif

40517_2023_258_Article_IEq102.gif

41116_2023_36_Article_IEq805.gif

41116_2023_36_Article_IEq803.gif

41116_2023_36_Article_IEq795.gif

41116_2023_36_Article_IEq789.gif

41116_2023_36_Article_IEq781.gif

Fig. 2

41116_2023_36_Article_IEq765.gif

41116_2023_36_Article_IEq753.gif

41116_2023_36_Article_IEq747.gif

41116_2023_36_Article_IEq744.gif

41116_2023_36_Article_IEq733.gif

Fig. 1

Fig. 6

40517_2023_258_Article_IEq51.gif

41116_2023_36_Article_IEq718.gif

40517_2023_258_Article_IEq46.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  文献评价指标  
  下载次数:0次 浏览次数:0次